首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid hormone (PTH) alters the shape of osteoblastic cells both in vivo and in vitro. In this study, we examined the effect of PTH on cytoskeletal actin and myosin, estimated by polyacrylamide gel electrophoresis of Triton X-100 (1%) nonextractable proteins. After 2-5 minutes, PTH caused a rapid and transient decrease of 50-60% in polymerized actin and myosin associated with the Triton X-100 nonextractable cytoskeleton. Polymerized actin returned to control levels by 30 min. The PTH effect was dose-dependent with an IC50 of about 1 nM, and was partially inhibited by the (3-34) PTH antagonist. PTH caused a rapid transient rise in cyclic AMP (cAMP) in these cells that peaked at 4 min, while the nadir in cytoskeletal actin and myosin was recorded around 5 min. The intracellular calcium chelator Quin-2/AM (10 microM) also decreased cytoskeletal actin and myosin, to the same extent as did PTH (100 nM). To distinguish between cAMP elevation and Ca++ reduction as mediators of PTH action, we measured the phosphorylation of the 20 kD (PI 4.9) myosin light chain in cells preincubated with [32P]-orthophosphate. The phosphorylation of this protein decreased within 2-3 min after PTH addition and returned to control levels after 5 min. The calcium ionophore A-23187 did not antagonize this PTH effect. Visualization of microfilaments with rhodamine-conjugated phalloidin showed that PTH altered the cytoskeleton by decreasing the number of stress fibers. These changes in the cytoskeleton paralleled changes in the shape of the cells from a spread configuration to a stellate form with retracting processes. The above findings indicate that the alteration in osteoblast shape produced by PTH involve relatively rapid and transient changes in cytoskeletal organization that appear to be mediated by cAMP.  相似文献   

2.
Parathyroid hormone (PTH) has been shown to cause transient cell shape changes in bone cells. We have examined the effects of parathyroid hormone and forskolin on the organization and expression of cytoskeletal proteins in cultured mouse endosteal osteoblastic cells. Analysis of [35S]methionine-labeled cytoskeletal proteins isolated on two-dimensional gel electrophoresis showed that PTH treatment (24 h) stimulated the de novo biosynthesis of actin, vimentin and tubulins in confluent cells, whereas forskolin had a minor effect despite a huge stimulation of cAMP production. This PTH-induced stimulation was associated with cell respreading following a mild and transitory cell retraction. PTH increased the synthesis of monomeric subunits of actin and beta-tubulins in subconfluent bone cells, whereas both monomeric and polymeric levels of beta-tubulins were increased in confluent osteoblasts. Under conditions reducing cell spreading, osteoblastic cells had initially high levels of unpolymerized subunits. In these poorly spread cells, parathyroid hormone or forskolin had no effect on the de novo synthesis of cytoskeletal proteins despite a marked elevation in intracellular cAMP levels. It is concluded that PTH affects the biosynthesis of cytoskeletal proteins in osteoblastic cells and that cAMP production does not seem to be directly involved. In addition, the effect of PTH is modulated by cell spreading and by the initial pool of cytoskeletal subunits.  相似文献   

3.
Parathyroid hormone (PTH) has been shown to cause transient cell shape changes in bone cells. We have examined the effects of parathyroid hormone and forskolin on the organization and expression of cytoskeletal proteins in cultured mouse endosteal osteoblastic cells. Analysis of [35S]methionine-labeled cytoskeletal proteins isolated on two-dimensional gel electrophoresis showed that PTH treatment (24 h) stimulated the de novo biosynthesis of actin, vimentin and tubulins in confluent cells, whereas forskolin had a minor effect despite a huge stimulation of cAMP production. This PTH-induced stimulation was associated with cell respreading following a mild and transitory cell retraction. PTH increased the synthesis of monomeric subunits of action and β-tubulins in subconfluent bone cells, whereas both monomeric and polymeric levels of β-tubulins were increased in confluent osteoblasts. Under conditions reducing cell spreading, osteoblastic cells had initially high levels of unpolymerized subunits. In these poorly spread cells, parathyroid hormone or forskolin had no effect on the de novo synthesis of cytoskeletal proteins despite a marked elevation in intracellular cAMP levels. It is concluded that PTH affects the biosynthesis of cytoskeletal proteins in osteoblastic cells and that cAMP production does not seem to be directly involved. In addition, the effect of PTH is modulated by cell spreading and by the initial pool of cytoskeletal subunits.  相似文献   

4.
Much of the cholesterol used in steroid synthesis is stored in lipid droplets in the cytoplasm of steroid-forming cells. The cholesterol ester in these droplets is transported to the inner mitochondrial membrane where it enters the pathway to steroid hormones as free cholesterol—the substrate for the first enzyme, namely P450scc. It has been shown that this transport process governs the rate of steroid synthesis and is specifically stimulated by ACTH and its second messenger. The stimulating influence of ACTH on cholesterol transport is inhibited by cytochalasins, by monospecific anti-actin and by DNase I demonstrating that the steroidogenic cell must possess a pool of monomeric actin available for polymerization to F actin if it is to respond to ACTH and cyclic AMP. It has been shown that the two structures involved in cholesterol transport (droplets and mitochondria) are both bound to vimentin intermediate filaments in adrenal and Leydig cells. In addition these filaments are closely associated with the circumferential actomyosin ring in which they are crosslinked by actin microfilaments. In permeabilized adrenal cells Ca2+/calmodulin phosphorylates vimentin and this change is known to disrupt intermediate filaments and to cause contraction of actomyosin by phosphorylating myosin light chain kinase. Ca2+/calmodulin stimulated cholesterol transport and steroid synthesis and causes rounding of the responding cells by contraction of the actomyosin, if ATP is also added at the same time. Other agents that disrupt intermediate filaments include anti-vimentin plus ATP in permeabilized cells which also results in rounding of the cell. Acrylamide exerts a similar effect in intact adrenal cells and in addition causes rounding of the cells and increase in steroid synthesis without increase in cyclic AMP. It is also known that if adrenal cells are grown on surfaces treated with poly(HEMA), the cells grow in rounded form and steroid synthesis is increased in proportion to the degree of rounding (r = 0.92). This response does not involve increase in cellular levels of cylic AMP. It is proposed that in vivo where the cell is always round and cannot show more than strictly limited change in shape, ACTH activates Ca2+/calmodulin possibly by redistributing cellular Ca2+. Ca2+/calmodulin in turn promotes phosphorylation of vimentin and myosin light chain. The first of these phosphorylations shortens intermediate filaments and the second promotes contraction of the actomoyosin ring with internal shortening and approximation of lipid droplets and mitochondria. Details of the earlier events (activation of Ca2+/calmodulin) and later changes (transfer of cholesterol to the inner membrane) remain to be elucidated. It is clear however that the action of ACTH requires increase in cellular cyclic AMP. These experimental responses bypass this step in the response to ACTH.  相似文献   

5.
Cultured airway smooth muscle cells subjected to cyclic deformational strain have increased cell content of myosin light chain kinase (MLCK) and myosin and increased formation of actin filaments. To determine how these changes may increase cell contractility, we measured isometric force production with changes in cytosolic calcium in individual permeabilized cells. The pCa for 50% maximal force production was 6.6+/-0.4 in the strain cells compared with 5.9+/-0.3 in control cells, signifying increased calcium sensitivity in strain cells. Maximal force production was also greater in strain cells (8.6+/-2.9 vs. 5.7+/-3.1 microN). The increased maximal force production in strain cells persisted after irreversible thiophosphorylation of myosin light chain, signifying that increased force could not be explained by differences in myosin light chain phosphorylation. Cells strained for brief periods sufficient to increase cytoskeletal organization but insufficient to increase contractile protein content also produced more force, suggesting that strain-induced cytoskeletal reorganization also increases force production.  相似文献   

6.
Previous studies have indicated that the effects of parathyroid hormone (PTH) on osteoblastic function involve alteration of cytoskeletal assembly. We have reported that after a transitory cell retraction, PTH induces respreading with stimulation of actin, vimentin and tubulins synthesis in mouse bone cells and that this effect is not mediated by cAMP. In order to further elucidate the role of intracellular cAMP and calcium on PTH action on bone cell shape and cytoskeleton we have compared the effects of calcium- and cAMP-enhancing factors on actin, tubulin and vimentin synthesis in relation with mouse bone cell morphology, DNA synthesis and alkaline phosphatase activity as a marker of differentiation. Confluent mouse osteoblastic cells were treated with 0.1 mM isobutylmethylxanthine (IBMX) for 24 h. This treatment caused an increase in the levels of cytoskeletal subunits associated with an elevation of cAMP. Under these conditions, PTH (20 nM) and forskolin (0.1 microM) produced persistent cytoplasmic retraction. PTH and forskolin treatment in presence of IBMX (24 h) induced inhibitory effects on actin and tubulin synthesis evaluated by [35S]methionine incorporation into cytoskeletal proteins identified on two-dimensional gel electrophoresis. Under these culture conditions PTH and forskolin also caused disassembly of microfilament and microtubules as shown by the marked reduction in Triton X soluble-actin and alpha- and beta-tubulins. In contrast, incubation of mouse bone cells with 1 microM calcium ionophore A23187 (24 h) resulted in increased monomeric and polymeric forms of actin and tubulin while not affecting intracellular cAMP. Alkaline phosphatase activity was increased in all conditions while DNA synthesis evaluated by [3H]thymidine incorporation into DNA was stimulated by PTH combined with forskolin and inhibited by the calcium ionophore. These data indicate that persistent elevation of cAMP levels induced by PTH and forskolin with IBMX cause cell retraction with actin and tubulin disassembly whereas rising cell calcium induces cytoskeletal protein assembly and synthesis in mouse osteoblasts. The results point to a distinct involvement of calcium and cAMP in both cytoskeletal assembly and DNA synthesis in mouse bone cells.  相似文献   

7.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 +/- 115 fmol/micrograms DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 +/- 17 fmol/microgram DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

8.
Amebas of Dictyostelium discoideum contain both microfilaments and microtubules. Microfilaments, found primarily in a cortical filament network, aggregate into bundles when glycerinated cells contract in response to Mg-ATP. These cortical filaments bind heavy meromyosin. Microtubules are sparse in amebas before aggregation. Colchicine, griseofulvin, or cold treatments do not affect cell motility or cell shape. Saltatory movement of cytoplasmic particles is inhibited by these treatments and the particles subsequently accumulate in the posterior of the cell. Cell motility rate changes as Dicytostelium amebas go through different stages of the life cycle. Quantitation of cellular actin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that the quantity of cellular actin changes during the life cycle. These changes in actin are directly correlated with changes in motility rate. Addition of cyclic AMP to Dictyostelium cultures at the end of the feeding stage prevents a decline in motility rate during the preaggregation stage. Cyclic AMP also modifies the change in actin content of the cells during preaggregation.  相似文献   

9.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 ± 115 fmol/μg DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 ± 17 fmol/μg DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

10.
This review is concerned with the roles of cyclic GMP and Ca2+ ions in signal transduction for chemotaxis ofDictyostelium. These molecules are involved in signalling between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Evidence is presented for uptake and/or eflux of Ca2+ being regulated by cyclic GMP. The link between Ca2+, cyclic GMP and chemotactic cell movement has been explored using streamer F mutants whose primary defect is in the structural gene for the cyclic GMP-specific phosphodiesterase. This mutation causes the mutants to produce an abnormally prolonged peak of cyclic GMP accumulation in response to stimulation with the chemoattractant cyclic AMP. The production and relay of cyclic AMP signals is normal in these mutants, but certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and regulation of both myosin heavy and light chain phosphorylation. These changes can be correlated with changes in the shape of the amoebae after chemotactic stimulation. Other mutants in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses.A model is described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by regulating phosphorylation of the myosin heavy and light chain kinases.  相似文献   

11.
Cyclic adenosine monophosphate (AMP) has numerous important effects on cell structure and function, but its role in endothelial cells is unclear. Since cyclic AMP has been shown to affect transmembrane transport, cell growth and morphology, cellular adhesion, and cytoskeletal organization, it may be an important determinant of endothelial barrier properties. To test this we exposed bovine pulmonary artery endothelial cell monolayers to substances known to increase cyclic AMP and measured their effect on endothelial permeability to albumin and endothelial cell cyclic AMP concentrations. Cholera toxin (CT), a stimulant of the guanine nucleotide binding subunit of adenylate cyclase, led to a concentration-dependent 2-6-fold increase in cyclic AMP which was associated with a 3-10-fold reduction in albumin transfer across endothelial monolayers. The effect was not specific to albumin as similar barrier-enhancing effects were also noted with an unrelated macromolecule, fluorescein isothiocyanate (FITC)-dextran (MW 70,000). Barrier enhancement with cyclic AMP elevation was also observed with forskolin, a stimulant of the catalytic subunit of adenylate cyclase. The temporal pattern of barrier enhancement seen with these agents paralleled their effects on increasing cyclic AMP, and the barrier enhancement could be reproduced by incubation with either dibutyryl cyclic AMP or Sp-cAMPS, cyclic AMP-dependent protein kinase agonists. Furthermore, the forskolin effect on barrier enhancement was partially reversed with Rp-cAMPS, an antagonist of cyclic AMP-dependent protein kinase. Since endothelial actin polymerization may be an important determinant of endothelial barrier function, we sought to determine whether the cyclic AMP-induced effects were associated with increases in the polymerized actin pool (F-actin). Both cholera toxin and forskolin led to apparent endothelial cell spreading and quantitative increases in endothelial cell F-actin fluorescence. In conclusion, increased endothelial cell cyclic adenine nucleotide activity was an important determinant of endothelial barrier function in vitro. The barrier enhancement was associated with increased endothelial apposition and increases in F-actin, suggesting that influences on cytoskeletal assembly may be involved in this process.  相似文献   

12.
One- and two-dimensional electrophoresis patterns and distribution of major cytoskeletal proteins were studied in primary astrocytes with either flat-epitheloid or stellate appearance. No major differences in the electrophoretic patterns of actin, tubulin, glial fibrillary acidic protein (GFAP) and vimentin were detected between flat-epitheloid and stellate process-bearing astrocytes produced by the exposure of cultures to dibutyryl cyclic AMP (dBcAMP). However the morphological changes of astrocytes were accompanied by marked changes in the quantitative distribution of cytoskeletal proteins. The most prominent change was a large and specific decrease in the amount of actin, detected by [35S]methionine incorporation, densitometric scanning of one-dimensional gels and DNase inhibition assay. In stellate astrocytes produced by a 4 day treatment with dibutyryl cyclic AMP, the amount of actin decreased by 50%. This decrease was not apparently related to the depolymerization of actin.  相似文献   

13.
Specific activity of the myelin enzyme, 2′:3′-cyclic-nucleotide 3′-phosphohydrolase (EC 3.1.4.37), increases 2- to 10-fold when sparsely inoculated cultures of C6 rat glioma cells are allowed to grow to high cell density. Cyclic-nucleotide phosphohydrolase specific activity is also induced in C6 cells and in oligodendrocytes by dibutyryl cyclic AMP or by agents that elevate intracellular cyclic AMP. In this report, we have compared the density-dependent induction of cyclic-nucleotide phosphohydrolase activity with the cyclic AMP-dependent induction. Dibutyryl cyclic AMP induced cyclic-nucleotide phosphohydrolase specific activity in both sparse and dense cultures which had very different density-dependent cyclic-nucleotide phosphohydrolase activities. Induction of both cyclic-nucleotide phosphohydrolase specific activity and intracellular cyclic AMP content by norepinephrine also occurred to a similar degree in sparse and dense cultures. Similar results were obtained for several clones of C6 cells, and for a clone of oligodendrocyte x C6 cell hybrids. Induction of cyclic-nucleotide phosphohydrolase by norepinephrine or dibutyryl cyclic AMP was not due to a change in cell density or rate of cell proliferation, nor did cell density have any appreciable effect on cyclic AMP content of the cells. These results show that regulation of cyclic-nucleotide phosphohydrolase activity in C6 cells involves two distinct mechanisms.  相似文献   

14.
The role of actin filaments in the development of cellular shape in the mesenteric mesothelium of the bullfrog was studied by using a simple, new technique for making en face preparations of mesothelial sheets. By using these mesothelial cell preparations, the distribution of actin was determined by means of fluorescence microscopy with 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin and that of myosin by means of immunofluorescence microscopy. Although fluorescence produced by both NBD-phallacidin and antimyosin staining was found exclusively along the margins of the cells, its intensity was altered in correspondence with changes in cell shape. For instance, tadpole-type mesothelial cells with either an irregular or very slender cell shape showed very weak fluorescence. On the other hand, frog-type mesothelial cells with a polygonal shape showed intense fluorescence at their margins and had circumferential bundles of actin filaments at their apices. Furthermore, intercellular junctions between the mesothelial cells developed as the cell shape became polygonal during metamorphosis. The present study showed that development of circumferential bundles of actin filaments and intercellular junctions may serve to establish and maintain the definitive polygonal cellular pattern in the mesenteric mesothelium of the bullfrog.  相似文献   

15.
Studies on primary astrocytes cultured in vitro have shown that process formation involves changes in cytoskeletal proteins and release of tension on the substratum. Actin filament reorganization has previously been found to be the major cytoskeletal change occurring during process formation. These changes are relatively rapid with breakdown of the actin web and release of contacts occur within 15 min. of cyclic AMP treatment. The former is regulated by myosin light chain (MLC) and actin depolymerizing factor (ADF), with MLC involved in the initial release of contractile tension and ADF in both initial and longer term actin breakdown. Our results show that the dephosphorylation of MLC is due to the phosphorylation and inactivation of myosin light chain kinase (MLCK) in response to cyclic AMP. To further study the mechanisms underlying the process formation in astrocytes we used endothelin-1 (ET-1), a vasopeptide which has been shown to inhibit process formation in astrocytes and sodium fluoride which is a general phosphatase inhibitor. We observe an increase in phosphorylation of MLC on inhibition of process formation. To study the role of adhesion in process formation we used suspension cultures of astrocytes. Our results with the astrocytes in suspension suggest that the process formation in astrocytes is adhesion dependent and the changes in ADF and MLC occur only when there is process formation.  相似文献   

16.
Evidence is presented for Ca2+ and cyclic GMP being involved in signal transduction between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Ca2+ is shown to be required for chemotactic aggregation of amoebae. The evidence for uptake and/or eflux of this ion being regulated by the nucleotide cyclic GMP is discussed. The connection between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants. The primary defect in these mutants is in the structural gene for the cyclic GMP-specific phosphodiesterase which results in the mutants producing an abnormally prolonged peak of accumulation of cyclic GMP in response to stimulation with the chernoattractant cyclic AMP. While events associated with production and relay of cyclic AMP signals are normal, certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and inhibition of myosin heavy and light chain phosphorylation. These changes can be correlated with the amoebae becoming elongated and transiently decreasing their locomotive speed after chemotactic stimulation. Other mutants studied in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses. Models are described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by inhibiting phosphorylation of the myosin heavy and light chain kinases.  相似文献   

17.
The murine epithelial cell line MMC-E was used to study changes in the cytoskeletal organization associated with viral transformation of epithelial cells by two different viruses. The cells were transformed with Moloney mouse sarcoma virus (MSV) or murine leukemia virus (MuLV). The expression of actin, myosin and of intermediate filament proteins in the cells was then studied. In MMC-E cells actin and myosin were organized as belt-like structures at the edges of the border cells of the cell islands and also circumferentially in the cells inside the islands. The major change after transformation was the decrease of the actomyosin containing belt extending from cell to cell at the borders of the cell islands. Both MMC-E cells and the MSV-transformed cells contained keratin as a juxtanuclear granular aggregate whereas the MuLV-transformed cells showed bright fibrillar arrays of keratin. Both virus-transformed cell lines showed enhanced vimentin-specific fluorescence and analysis of their cytoskeletal polypeptides confirmed the result. Similar molecular forms of keratin polypeptides were seen in all cells by immunoblotting. Viral transformation of MMC-E epithelial cells thus leads to different changes in their cytoskeletal organization depending on the transforming viral or cellular gene.  相似文献   

18.
Cell spreading is correlated with changes in important cell functions including DNA synthesis, motility, and differentiation. Spreading is accompanied by a complex reorganization of the cytoskeleton that can be related to changes in cell stiffness. While cytoskeletal organization and the resulting cell stiffness have been studied in motile cells such as fibroblasts, less is known of these events in nonmigratory, epithelial cells. Hence, we examined the relationship between cell function, spreading, and stiffness, as measured by atomic force microscopy. Cell stiffness increased with spreading on a high density of fibronectin (1000 ng/cm(2)) but remained low in cells that stayed rounded on a low fibronectin density (1 ng/cm(2)). Disrupting actin or myosin had the same effect of inhibiting spreading, but had different effects on stiffness. Disrupting f-actin assembly lowered both stiffness and spreading, while inhibiting myosin light chain kinase inhibited spreading but increased cell stiffness. However, disrupting either actin or myosin inhibited DNA synthesis. These results demonstrate the relationship between cell stiffness and spreading in hepatocytes. They specifically show that normal actin and myosin function is required for hepatocyte spreading and DNA synthesis and demonstrate opposing effects on cell stiffness upon disruption of actin and myosin.  相似文献   

19.
Primary cultures containing ≥99% neurons, ≥99% non-neuronal cells (glia), or both cell types were prepared from the sympathetic ganglia of 12-day chick embryos. Levels of cyclic AMP in the non-neuronal cells (~14 pmol/mg protein) were approximately 3-fold higher than levels in the neurons (~4 pmol/mg protein). Mixed cultures had concentrations of cyclic AMP which fell between the values measured for pure neuronal and pure non-neuronal cultures. The measured cyclic AMP values of mixed cultures were indistinguishable from values predicted by summing the expected contributions of the neurons and non-neuronal cells. Thus, contact between the neurons and non-neuronal cells in these mixed cultures did not appear to alter the level of cyclic AMP in either cell type. Neuronal-glial interactions, such as the specific neuronal stimulation of non-neuronal cell proliferation, occurred independently of any changes in the level of cyclic AMP in the mixed cultures. Cell density was varied in both pure and mixed cultures, and both cyclic AMP concentrations and amounts of [3H]thymidine incorporation into DNA were measured. The cyclic AMP content of the non-neuronal cells varied inversely with cell density. [3H]Thymidine incorporation was independent of cell density in both neuronal and non-neuronal cultures. Parallel density-dependent decreases in cyclic AMP concentration and [3H]thymidine incorporation were observed in mixed cultures as cell density was increased. The data suggest that there is no relationship between changes in rate of non-neuronal cell proliferation and cyclic AMP levels in these cultures.  相似文献   

20.
Membrane envelopes prepared from Zn++-treated Sarcoma 180 cells contain polypeptides which appear to be related to the putative cellular cytoskeletal elements responsible for control of cell shape and motility. These include actin, myosin, α-actinin and a large polypeptide (mol wt 250,000) with some similarities to spectrin of the erythrocyte membrane. If the envelopes are vesiculated by extraction with alkaline EDTA solutions at low ionic strength, four major polypeptides are released, including the actin and spectrin-like materials; myosin is not extracted. The stabilized envelopes offer a useful source of material for the characterization of cytoskeletal elements and for the investigation of their associations with the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号