共查询到20条相似文献,搜索用时 0 毫秒
1.
农业生命周期评价研究进展 总被引:1,自引:0,他引:1
作为评价产品系统全链条环境影响的有效工具,生命周期评价(LCA)方法已广泛用于工业领域。农业领域也面临着高强度的资源和环境压力,LCA在农业领域的应用应运而生。旨在综述已有农业LCA研究的基础上,鉴别农业LCA应用存在的问题,并为农业LCA未来的发展提出建议。目前农业LCA存在系统边界和功能单位界定不明晰、缺少区域清单数据库、生命周期环境影响评价模型(LCIA)不能准确反映农业系统环境影响、结果解释存在误区等方面的问题。为了科学准确地衡量农业系统的环境影响,促进农业系统的可持续发展,文章认为农业LCA应该从以下几个方面加强研究,即科学界定评价的参照系、系统边界的扩大及功能单位的合理选取、区域异质性数据库构建与LCIA模型开发、基于组织农业LCA的开发以及对于利益相关者行为的研究。 相似文献
2.
Alena J. Raymond James R. Tipton Alissa Kendall Jason T. DeJong 《Journal of Industrial Ecology》2020,24(3):485-499
Life cycle assessment (LCA) has only had limited application in the geotechnical engineering discipline, though it has been widely applied to civil engineering systems such as pavements and roadways. A review of previous geotechnical LCAs showed that most studies have tracked a small set of impact categories, such as energy and global warming potential. Accordingly, currently reported environmental indicators may not effectively or fully capture important environmental impacts and tradeoffs associated with geotechnical systems, including those associated with land and soil resources. This research reviewed previous studies, methods, and models for assessment of land use and soil‐related impacts to understand their applicability to geotechnical LCA. The results of this review show that critical gaps remain in current knowledge and practice. In particular, further development or refinement of environmental indicators, impact categories, and cause–effect pathways is needed as they pertain to geotechnical applications—specifically those related to soil quality, soil functions, and the ecosystem services soils provide. In addition, many existing methods emerge from research on land use and land use change related to other disciplines (e.g., agriculture). For applicability to geotechnical projects, the resolution of many of these methods and resulting indicators need to be downscaled from the landscape/macro scale to the project scale. In the near term, practitioners of geotechnical LCA should begin tracking changes to soil properties and report impacts to land and soil resources qualitatively. 相似文献
3.
Alexander Cimprich Vanessa Bach Christoph Helbig Andrea Thorenz Dieuwertje Schrijvers Guido Sonnemann Steven B. Young Thomas Sonderegger Markus Berger 《Journal of Industrial Ecology》2019,23(5):1226-1236
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors. 相似文献
4.
Nie Zuoren Di Xianghua Li Guiqi Zuo Tieyong 《The International Journal of Life Cycle Assessment》2001,6(1):47-48
From the very beginning, the research of Material Life Cycle Assessment (MLCA) has been an important part of the ecomaterials
research in China, and large numbers of researchers have been focusing their efforts on it. From 1998, and supported by the
National High-tech Program-863 Projects, the study of some typical materials has been put into practice. Thus far, the first
phase of the project has been finished smoothly. The practical MLCA methods have been developed, and the manufacturing technologies
and processes of the steel and iron, aluminum, cement, ceramic, polymer and construction coatings have been assessed. The
relevant assessment software has been developed. Reference systems are being set up for evaluation by studying typical materials.
In this paper, the main achievements are reviewed. Some other developments of MLCA in China are also introduced. 相似文献
5.
Johan Pettersen Edgar G. Hertwich 《The International Journal of Life Cycle Assessment》2008,13(5):440-449
Background, Aim, and Scope The identification and assessment of environmental tradeoffs is a strongpoint of life cycle assessment (LCA). A tradeoff made
in many product systems is the exchange of potential for occupational accidents with the additional use of energy and materials.
Net benefits of safety measures with respect to human health are best illustrated if the consequences avoided and health impacts
induced by additional emissions are assessed using commensurable metrics. Our aim is to develop a human health impact indicator
for offshore crane lifts. Crane lifts are a major cause of accidents on offshore oil and gas (O & G) rigs, and health impacts
from crane lift accidents should be included in comparative LCA of O & G technologies if the alternatives differ in the use
of crane lifts.
Materials and methods Accident records for mobile offshore petroleum installations were used to develop an empirical occupational health indicator
for crane lifts in LCA. Probabilistic parameters were introduced in the procedure, and results were calculated by Monte Carlo
simulation. The disability adjusted life years (DALY) framework was used to classify health outcome. The characterization
factor for offshore crane lifts was applied in three comparisons to evaluate the significance of crane lifts to human health
impacts from drilling technology.
Results The mean occupational health impact per crane lift was 4.5∙10−6 DALY, with cumulative percentiles {P
2.5, P
50, P
97.5} = {6.0∙10−7, 3.1∙10−6, 1.7∙10−5}. Analogously, the fatal accident frequency was described by {P
2.5, P
50, P
97.5} = {7.6∙10−9, 3.9∙10−8, 2.0∙10−7}, with mean 5.6∙10−8 lives lost per crane lift.
Discussion The uncertainty in the results is caused mainly by the random nature of accidents, i.e., variability in accident frequency.
Applications of the characterization factor indicate that although crane lifts may not be significant to the overall health
impact of the life cycle of drilling fluids, they are important to the occupational safety of employees on offshore drilling
rigs and contribute significantly to the life cycle health impact of loading technologies used to transport drilling waste
to shore. A comparative LCA of technologies for loading and off-loading drilling wastes shows that a recently developed hydraulic
system performs better than the traditional crane lift alternative in terms of human health impacts.
Conclusions With the availability of statistics to assess the risk of single mechanical operations, safety aspects may well be included
in LCA. For the case of offshore crane lifts, the uncertainty in the characterization factor compares favorably to what is
indicated for other human health impact chains. In further work of quantifying occupational health impacts in DALY using accident
statistics, it is advised to see if records of non-recoverable injuries (fatalities and amputation cases) can be used to simplify
the damage assessment procedure as recoverable injuries were insignificant to the total burden from crane accidents.
Recommendations and perspectives The characterization factor for crane lifts identifies contributions to life cycle health impact from loading technologies
that otherwise would have been overlooked in LCA. While many contest the inclusion of occupational accidents in LCA, our results
show that such impacts can be included and that their consideration adds valuable insights. 相似文献
6.
Xingqiang Song Ying Liu Johan Berg Pettersen Miguel Brando Xiaona Ma Stian Rberg Bjrn Frostell 《Journal of Industrial Ecology》2019,23(5):1077-1086
Recirculating aquaculture systems (RAS) are an alternative technology to tackle the major environmental challenges associated with conventional cage culture systems. In order to systematically assess the environmental performance of RAS farming, it is important to take the whole life cycle into account so as to avoid ad hoc and suboptimal environmental measures. So far, the application of life cycle assessment (LCA) in aquaculture, especially to indoor RAS, is still in progress. This study reports on an LCA of Atlantic salmon harvested at an indoor RAS farm in northern China. Results showed that 1 tonne live‐weight salmon production required 7,509 kWh farm‐level electricity and generated 16.7 tonnes of CO2 equivalent (eq), 106 kg of SO2 eq, 2.4 kg of P eq, and 108 kg of N eq (cradle‐to‐farm gate). In particular, farm‐level electricity use and feed product were identified as primary contributors to eight of nine impact categories assessed (54–95% in total), except the potential marine eutrophication (MEU) impact (dominated by the grow‐out effluents). Among feed ingredients (on a dry‐weight basis), chicken meal (5%) and krill meal (8%) dominated six and three, respectively, of the nine impact categories. Suggested environmental improvement measures for this indoor RAS farm included optimization of stocking density, feeding management, grow‐out effluent treatment, substitution of feed ingredients, and selection of electricity generation sources. In a generic context, this study can contribute to a better understanding of the life cycle environmental impacts of land‐based salmon RAS operations, as well as science‐based communication among stakeholders on more eco‐friendly farmed salmon. 相似文献
7.
Understanding the environmental consequences of actions is becoming increasingly important in the field of industrial ecology in general, and in life cycle assessment (LCA) more specifically. However, a consensus on how to operationalize this idea has not been reached. A variety of methods have been proposed and applied to case studies that cover various aspects of consequential life cycle assessment (CLCA). Previous reviews of the topic have focused on the broad agenda of CLCA and how different modeling frameworks fit into its goals. However, explicit examination of the spectrum of methods and their application to the different facets of CLCA are lacking. Here, we provide a detailed review of methods that have been used to construct models of the environmental consequences of actions in CLCA. First, we cover the following structural modeling approaches: (a) economic equilibrium models, (b) system dynamics models, (c) technology choice models, and (d) agent‐based models. We provide a detailed review of particular applications of each model in the CLCA domain. The advantages and disadvantages of each are discussed, and their relationships with CLCA are clarified. From this, we are able to map these models onto the established aspects of CLCA. We learn that structural models alone are not sufficient to quantify the uncertainty distributions of underlying parameters in CLCA, which are essential components of a robust analysis of consequences. To address this, we provide a brief introduction to a counterfactual‐based causal inference approach to parameter identification and uncertainty analysis that is emerging in the CLCA literature. We recommend that one potential research path forward is the establishment of feedback loops between empirical estimates and structural models. 相似文献
8.
基于混合生命周期评价(Hybrid life cycle assessment,HLCA)提出一种改进生态效率模型,系统评价卫生填埋、卫生填埋⁃填埋气利用、焚烧发电、堆肥+卫生填埋和堆肥+焚烧发电5种我国典型生活垃圾处理情景的生态效率,并探究可持续性包含的环境、经济和社会多维权衡关系。结果表明,具有最大生态效率的生活垃圾处理情景因可持续性维度选取不同而异,如考虑人体健康损害影响,焚烧发电情景具有最大经济生态效率,而卫生填埋⁃填埋气利用情景具有最大社会生态效率。生活垃圾处理系统的可持续性评价维度之间具有显著的权衡关系,忽略某些影响类型可能带来问题转移。5种生活垃圾处理情景的环境影响各异,非焚烧情景气候变化影响和焚烧情景人体毒性影响突出。机器设备和燃料使用对资源消耗影响贡献最大,而生活垃圾处理过程对经济效益和其他环境影响贡献最大。本文提出的改进生态效率模型可以定量评价生活垃圾管理系统生态效率及权衡关系,为有效制定生活垃圾管理政策提供全面的信息支持。 相似文献
9.
Background, aim, and scope Life cycle assessment (LCA) has been considered one of the tools for supporting decision-making related to the environmental aspects of a product system. It has mainly been used to evaluate the potential impacts associated with relevant inputs and outputs to/from a given product system throughout its life cycle. In most cases, LCA has not considered the impacts on the internal environment, i.e. working environment, but only the external environment. Recently, it has been recognized that the consideration of the impacts on the working environment as well as on the external environment, is needed in order to assess all aspects of the effects on human well-being. To this end, this study has developed a total environmental assessment methodology which enables one to integrate both the working environment and the external environment into the conventional LCA framework. Materials and methods In general, the characteristics of the impacts on the external environment are different from those on the working environment. In order to properly integrate the two types into total environmental impacts, it is necessary to define identical system boundaries and select impact category indicators at the same level. In order to define the identical system boundary and reduce the uncertainties of LCI results, the hybrid IOA (input–output analysis) method, which integrates the advantages between conventional LCI method and IOA method, is introduced to collect input and output data throughout the entire life cycle of a given product. For the impact category indicators at the endpoint level, LWD (Lost Work Days) is employed to evaluate the damage to human health and safety in the working environment, while DALY (disability-adjusted life years) and PAF (Potentially Affected Fraction) are selected to evaluate the damage to human health and eco-system quality in the external environment, respectively. Results and discussion The environmental intervention factors (EIFs) are developed not only for the data categories of resource use, air emissions, and water emissions, but also for occupational health and safety to complete a life cycle inventory table. For the development of the EIFs on occupational health and safety, in particular, the number of workers affected by i hazardous items and the number of workers affected at the i magnitude of disability are collected. For the characterization of the impact categories in the working environment, such as occupational health and safety, the exposure factors, effect factors, and damage factors are developed to calculate the LWD of each category. For normalization, the normalization reference is defined as the total LWD divided by the total number of workers. A case study is presented to illustrate the applicability of the proposed method for the integration of the working environment into the conventional LCA framework. Conclusions This study is intended to develop a methodology which enables one to integrate the working environmental module into the conventional LCA framework. The hybrid IOA method is utilized to extend the system boundary of both the working environment module and the external environment module to the entire life cycle of a product system. In this study, characterization models and category indicators for occupational health and safety are proposed, respectively, while the methodology of Eco-indicator 99 is used for the external environment. In addition to aid further understanding on the results of this method, this study introduced and developed the category indicators such as DALY, and LWD, which can be expressed as a function of time, and introduced PAF, which can be expressed as a probability. Recommendations and perspectives The consideration of the impacts not only on the external environment, but also on the working environment, is very important, because the best solution for the external environment may not necessarily be the best solution for the working environment. It is expected that the integration of occupational health and safety matters into the conventional LCA framework can bring many benefits to individuals, as well as industrial companies, by avoiding duplicated measures and false optimization. 相似文献
10.
Alexandre Milovanoff I. Daniel Posen Heather L. MacLean 《Journal of Industrial Ecology》2021,25(1):67-78
Aluminum is one of the most used metals of modern civilization, but its production is responsible for multiple adverse environmental impacts mostly due to aluminum smelting and alumina refining. Previous life cycle assessments (LCAs) have aggregated alumina refining into a single global process even though refining processes are highly spatially differentiated and alumina is highly traded. Our work improves on existing LCAs of primary aluminum by including temporal and spatial differentiation in alumina refining and aluminum smelting and trade of alumina and primary aluminum ingots. We build country‐level impact factors for primary aluminum ingot production and consumption, with the spatial distributions of environmental impacts, from 2000 to 2017, by combining a trade‐linked multilevel material flow analysis with LCA using six midpoint categories of the ReCiPe method. Climate change impacts of primary aluminum production range from 4.5 to 33.6 kg CO2 eq./kg. We then estimate the life cycle production‐ and consumption‐based environmental burdens of primary aluminum ingot by country. High spatial variations exist among impact factors of primary aluminum production. Aggregating the alumina refining processes into a single process may cause important deviations on the impact factors of primary aluminum ingot production (up to 38% differences in climate change impacts). Finally, we estimate the climate change impacts of worldwide primary aluminum production at 1.2 Gt CO2 eq. in 2017 and untangle their spatial origins, localized at 70% in China. Overall, we show the importance of spatial differentiation for highly traded products that rely on highly traded inputs and offer recommendations for LCA practitioners. This article met the requirements for a gold‐gold JIE data openness badge described at http://jie.click/badges . 相似文献
11.
环境足迹的核算与整合框架——基于生命周期评价的视角 总被引:1,自引:0,他引:1
环境足迹及其与生命周期评价(LCA)的关系是工业生态学关注的新热点。从探讨环境足迹与LCA的关系入手,以碳足迹、水足迹、土地足迹和材料足迹为例,分别对每一项足迹指标两个版本的核算方法进行了比较。根据清单加和过程的特点,将所有足迹指标划分为基于权重因子和基于特征因子两类,总结了两者的适用性和局限性。在此基础上提出了一个环境足迹核算与整合的统一框架。该框架基于LCA视角建立,但对系统边界和清单数据的要求相对灵活,因而也适用于生命周期不甚明确的情形。研究在一定程度上揭示了足迹指标的方法学实质,同时也为环境影响综合评估提供了一条规范化的途径。 相似文献
12.
System expansion and allocation in life cycle assessment of milk and beef production 总被引:3,自引:0,他引:3
Background, Goal and Scope System expansion is a method used to avoid co-product allocation. Up to this point in time it has seldom been used in LCA
studies of food products, although food production systems often are characterised by closely interlinked sub-systems. One
of the most important allocation problems that occurs in LCAs of agricultural products is the question of how to handle the
co-product beef from milk production since almost half of the beef production in the EU is derived from co-products from the
dairy sector. The purpose of this paper is to compare different methods of handling co-products when dividing the environmental
burden of the milk production system between milk and the co-products meat and surplus calves.
Main Features This article presents results from an LCA of organic milk production in which different methods of handling the co-products
are examined. The comparison of different methods of co-product handling is based on a Swedish LCA case study of milk production
where economic allocation between milk and meat was initially used. Allocation of the co-products meat and surplus calves
was avoided by expanding the milk system. LCA data were collected from another case study where the alternative way of producing
meat was analysed, i.e. using a beef cow that produces one calf per annum to be raised for one and a half year. The LCA of
beef production was included in the milk system. A discussion is conducted focussing on the importance of modelling and analysing
milk and beef production in an integrated way when foreseeing and planning the environmental consequences of manipulating
milk and beef production systems.
Results This study shows that economic allocation between milk and beef favours the product beef. When system expansion is performed,
the environmental benefits of milk production due to its co-products of surplus calves and meat become obvious. This is especially
connected to the impact categories that describe the potential environmental burden of biogenic emissions such as methane
and ammonia and nitrogen losses due to land use and its fertilising. The reason for this is that beef production in combination
with milk can be carried out with fewer animals than in sole beef production systems.
Conclusion, Recommendation and Perspective Milk and beef production systems are closely connected. Changes in milk production systems will cause alterations in beef
production systems. It is concluded that in prospective LCA studies, system expansion should be performed to obtain adequate
information of the environmental consequences of manipulating production systems that are interlinked to each other. 相似文献
13.
14.
《Animal : an international journal of animal bioscience》2013,7(5):860-869
This study evaluated effects of farming practice scenarios aiming to reduce greenhouse gas (GHG) emissions and subsequent alternative land use on environmental impacts of a beef cattle production system using the life cycle assessment approach. The baseline scenario includes a standard cow–calf herd with finishing heifers based on grazing, and a standard bull-fattening herd using a diet mainly based on maize silage, corresponding to current farm characteristics and management by beef farmers in France. Alternative scenarios were developed with changes in farming practices. Some scenarios modified grassland management (S1: decreasing mineral N fertiliser on permanent grassland; S2: decreasing grass losses during grazing) or herd management (S3: underfeeding of heifers in winter; S4: fattening female calves instead of being reared at a moderate growth rate; S5: increasing longevity of cows from 7 to 9 years; S6: advancing first calving age from 3 to 2 years). Other scenarios replaced protein sources (S7: partially replacing a protein supplement by lucerne hay for the cow–calf herd; S8: replacing soya bean meal with rapeseed meal for the fattening herd) or increased n-3 fatty acid content using extruded linseed (S9). The combination of compatible scenarios S1, S2, S5, S6 and S8 was also studied (S10). The impacts, such as climate change (CC, not including CO2 emissions/sequestration of land use and land-use change, LULUC), CC/LULUC (including CO2 emissions of LULUC), cumulative energy demand, eutrophication (EP), acidification and land occupation (LO) were expressed per kg of carcass mass and per ha of land occupied. Compared with the baseline, the most promising practice to reduce impacts per kg carcass mass was S10 (all reduced by 13% to 28%), followed by S6 (by 8% to 10%). For other scenarios, impact reduction did not exceed 5%, except for EP (up to 11%) and LO (up to 10%). Effects of changes in farming practices (the scenarios) on environmental impacts varied according to impact category and functional unit. For some scenarios (S2, S4, S6 and S10), permanent grassland area and LO per kg of carcass decreased by 12% to 23% and 9% to 19%, respectively. If the ‘excess’ permanent grassland was converted to fast-growing conifer forest to sequester carbon in tree and soil biomass, CC/LULUC per kg of carcass could be reduced by 20%, 25%, 27% and 48% for scenarios S2, S4, S6 and S10, respectively. These results illustrate the potential of farming practices and forest as an alternative land use to contribute to short- and mid-term GHG mitigation of beef cattle production systems. 相似文献
15.
《Animal : an international journal of animal bioscience》2020,14(12):2598-2608
To identify a proper strategy for future feed-efficient pig farming, it is required to evaluate the ongoing selection scenarios. Tools are lacking for the evaluation of pig selection scenarios in terms of environmental impacts to provide selection guidelines for a more sustainable pig production. Selection on residual feed intake (RFI) has been proposed to improve feed efficiency and potentially reduce the associated environmental impacts. The aim of this study was thus to develop a model to account for individual animal performance in life cycle assessment (LCA) methods to quantify the responses to selection. Experimental data were collected from the fifth generation of pig lines divergently selected for RFI (low line, more efficient pigs, LRFI; high line, less efficient pigs, HRFI). The average feed conversion ratio (FCR) and daily feed intake of LRFI pigs were 7% lower than the average of HRFI pigs (P < 0.0001). A parametric model was developed for LCA based on the dietary net energy fluxes in a pig system. A nutritional pig growth tool, InraPorc®, was included as a module in the model to embed flexibility for changes in feed composition, animal performance traits and housing conditions and to simulate individual pig performance. The comparative individual-based LCA showed that LRFI had an average of 7% lower environmental impacts per kilogram live pig at farm gate compared to HRFI (P < 0.0001) on climate change, acidification potential, freshwater eutrophication potential, land occupation and water depletion. High correlations between FCR and all environmental impact categories (>0.95) confirmed the importance of improvement in feed efficiency to reduce environmental impacts. Significant line differences in all impact categories and moderate correlations with impacts (>0.51) revealed that RFI is an effective measure to select for improved environmental impacts, despite lower correlations compared to FCR. Altogether more optimal criteria for efficient environment-friendly selection can then be expected through restructuring the selection indexes from an environmental point of view. 相似文献
16.
Social impacts of novel technology can, parallel to environmental and economic consequences, influence its sustainability. By analyzing the case of hydrogen production by advanced alkaline water electrolysis (AEL) from a life cycle perspective, this paper illustrates the social implications of the manufacturing of the electrolyzer and hydrogen production when installed in Germany, Austria, and Spain. This paper complements previous environmental and economic assessments, which selected this set of countries based on their different structures in electricity production. The paper uses a mixed method design to analyze the social impact for the workers along the process chain. Appropriate indicators related to working conditions are selected on the basis of the UN Agenda 2030 Sustainable Development Goals. The focus on workers is chosen as a first example to test the relatively new Product Social Impact Life Cycle Assessment (PSILCA) database version 2.0. The results of the quantitative assessment are then complemented and compared through an investigation of the underlying raw data and a qualitative literature analysis. Overall, advanced AEL is found to have least social impact along the German process chain, followed by the Spanish and the Austrian. All three process chains show impacts on global upstream processes. In order to reduce social impact and ultimately contribute to Sustainable Development, policymakers and industry need to work together to further improve certain aspects of working conditions in different locations, particularly within global upstream processes. 相似文献
17.
Tuomas Helin Laura Sokka Sampo Soimakallio Kim Pingoud Tiina Pajula 《Global Change Biology Bioenergy》2013,5(5):475-486
Forests are a significant pool of terrestrial carbon. A key feature related to forest biomass harvesting and use is the typical time difference between carbon release into and sequestration from the atmosphere. Traditionally, the use of sustainably grown biomass has been considered as carbon neutral in life cycle assessment (LCA) studies. However, various approaches to account for greenhouse gas (GHG) emissions and sinks of forest biomass acquisition and use have also been developed and applied, resulting in different conclusions on climate impacts of forest products. The aim of this study is to summarize, clarify, and assess the suitability of these approaches for LCA. A literature review is carried out, and the results are analyzed through an assessment framework. The different approaches are reviewed through their approach to the definition of reference land‐use situation, consideration of time frame and timing of carbon emissions and sequestration, substitution credits, and indicators applied to measure climate impacts. On the basis of the review, it is concluded that, to account for GHG emissions and the related climate impacts objectively, biomass carbon stored in the products and the timing of sinks and emissions should be taken into account in LCA. The reference situation for forest land use has to be defined appropriately, describing the development in the absence of the studied system. We suggest the use of some climate impact indicator that takes the timing of the emissions and sinks into consideration and enables the use of different time frames. If substitution credits are considered, they need to be transparently presented in the results. Instead of carbon stock values taken from the literature, the use of dynamic forest models is recommended. 相似文献
18.
结合城市生活垃圾管理系统特征,系统归纳基于生命周期评价(Life cycle assessment,LCA)方法的城市生活垃圾管理模型的发展现状,并对LCA方法在城市生活垃圾管理中的实践以及在我国开展城市生活垃圾管理LCA研究的应用前景进行评述。分析表明,LCA是城市生活垃圾管理领域的重要工具之一,基于LCA方法的城市生活垃圾管理模型在全生命周期环境影响评价与识别、处置工艺选择与改进、可持续生活垃圾管理决策支持等方面具有十分重要的应用价值。中国在本地化生活垃圾管理系统LCA模型开发、清单数据库和评价指标体系构建以及与其他研究方法集成等方面面临挑战。 相似文献
19.
Alan C Brent Mark B Rohwer Elena Friedrich Harro von Blottnitz 《The International Journal of Life Cycle Assessment》2002,7(3):167-172
In view of the upcoming 2002 World Summit in Johannesburg, sustainable development is a topic of high priority in South Africa.
Although the South African competency in Life Cycle Assessment (LCA) and Life Cycle Engineering (LCE) has grown to some extent
over the last ten years, South African industry and government have been slow to realise the benefit of LCAs and LCE as tools
to support cleaner production and sustainable development. However, the local application of these tools, as well as considerations
during their use, differs from practices in developed countries. The applications of LCAs and LCE, the type of organisations
involved and the limitations and common problems associated with these tools in South Africa are discussed. 相似文献
20.
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。 相似文献