共查询到20条相似文献,搜索用时 0 毫秒
1.
《Animal : an international journal of animal bioscience》2016,10(3):500-507
Feed is a strong incentive for encouraging cows in automatic milking systems (AMS) to voluntarily move around the farm and achieve milkings distributed across the 24 h day. It has been reported that cows show preferences for some forages over others, and it is possible that offering preferred forages may increase cow traffic. A preliminary investigation was conducted to determine the effect of offering a forage crop for grazing on premilking voluntary waiting times in a pasture-based robotic rotary system. Cows were offered one of two treatments (SOYBEAN or GRASS) in a cross-over design. A restricted maximum likelihood procedure was used to model voluntary waiting times. Mean voluntary waiting time was 45.5±6.0 min, with no difference detected between treatments. High and mid-production cows spent <44 min/milking in the premilking yard compared with >55 min/milking for low-production cows, whereas waiting time increased as queue length increased. Voluntary waiting time was 23% and 80% longer when cows were fetched from the paddock or had a period of forced waiting before volunteering for milking, respectively. The time it took cows to return to the dairy since last exiting was not affected by treatment, with a mean return time of 13.7±0.6 h. Although offering SOYBEAN did not encourage cows to traffic more readily through the premilking yard, the concept of incorporating forage crops in AMS still remains encouraging if the aim is to increase the volume or quantity of home-grown feed rather than improving cow traffic. 相似文献
2.
《Animal : an international journal of animal bioscience》2018,12(4):853-863
The objective of this experiment was to establish the effect of low-concentrate (LC) and high-concentrate (HC) supplementation in the early and late periods of lactation on milk production and cow traffic in a pasture-based automatic milking (AM) system. In total, 40 cows (10 primiparous and 30 multiparous) were randomly assigned to one of the two treatments. The experimental periods for the early and late lactation trials extended from 23 February to 12 April 2015 and 31 August to 18 October 2015, respectively (49 days in each trial period). The early lactation supplement levels were 2.3 and 4.4 kg/cow per day for LC and HC, respectively, whereas the late lactation supplement levels were 0.5 and 2.7 kg/cow per day for LC and HC, respectively. Variables measured included milking frequency, milking interval, milking outcome and milking characteristics, milk yield/visit and per day, wait time/visit and per day, return time/visit and the distribution of gate passes. As the herd was seasonal (spring) calving, the experimental periods could not run concurrently and as a result no statistical comparison between the periods was conducted. There was no significant effect of treatment in the early lactation period on any of the milk production, milking characteristics or cow traffic variables. However, treatment did significantly affect the distribution of gate passes, with the HC cows recording significantly more gate passes in the hours preceding the gate time change such as hours 7 (P<0.01), 15 (P<0.05), 20, 21 (P<0.001), and 22 (P<0.05), whereas the LC treatment recorded significantly more gate passes in the hours succeeding the gate time change, such as time points 2 (P<0.01) and 10 (P<0.05). There was a significant effect of treatment in late lactation, with HC having a greater milk yield (P<0.01), milking duration and activity/day (P<0.05), while also having a significantly shorter milking interval (P<0.05) and return time/visit (P<0.01). The distribution of gate passes were similar to the early lactation period, with HC also recording a significantly greater number of gate passes during the early morning period (P<0.01) when visitations were at their lowest. Any decision regarding the supplementing of dairy cows with concentrates needs to be examined from an economic perspective, to establish if the milk production and cow traffic benefits displayed in late lactation outweigh the cost of the concentrate; thereby ensuring that the decision to supplement is financially prudent. 相似文献
3.
《Animal : an international journal of animal bioscience》2017,11(11):2061-2069
Increased economic, societal and environmental challenges facing agriculture are leading to a greater focus on effective way to combine grazing and automatic milking systems (AMS). One of the fundamental aspects of robotic milking is cows’ traffic to the AMS. Numerous studies have identified feed provided, either as fresh grass or concentrate supplement, as the main incentive for cows to return to the robot. The aim of this study was to determine the effect of concentrate allocation on voluntary cow traffic from pasture to the robot during the grazing period, to highlight the interactions between grazed pasture and concentrate allocation in terms of substitution rate and the subsequent effect on average milk yield and composition. Thus, 29 grazing cows, milked by a mobile robot, were monitored for the grazing period (4 months). They were assigned to two groups: a low concentrate (LC) group (15 cows) and a high concentrate (HC) group (14 cows) receiving 2 and 4 kg concentrate/cow per day, respectively; two allocations per day of fresh pasture were provided at 0700 and 1600 h. The cows had to go through the AMS to receive the fresh pasture allocation. The effect of concentrate level on robot visitation was calculated by summing milkings, refusals and failed milkings/cow per day. The impact on average daily milk yield and composition was also determined. The interaction between lactation number and month was used as an indicator of pasture availability. Concentrate allocation increased significantly robot visitations in HC (3.60±0.07 visitations/cow per day in HC and 3.10±0.07 visitations/cow per day in LC; P<0.001) while milkings/cow per day were similar in both groups (LC: 2.37±0.02/day and HC: 2.39±0.02/day; Ns). The average daily milk yield over the grazing period was enhanced in HC (22.39±0.22 kg/cow per day in HC and 21.33±0.22 kg/cow per day in LC; P<0.001). However the gain in milk due to higher concentrate supply was limited with regards to the amount of provided concentrates. Milking frequency in HC primiparous compared with LC was increased. In the context of this study, considering high concentrate levels as an incentive for robot visitation might be questioned, as it had no impact on milking frequency and limited impact on average milk yield and composition. By contrast, increased concentrate supply could be targeted specifically to primiparous cows. 相似文献
4.
《Animal : an international journal of animal bioscience》2019,13(7):1529-1535
Achieving a consistent level of robot utilisation throughout 24 h maximises automatic milking system (AMS) utilisation. However, levels of robot utilisation in the early morning hours are typically low, caused by the diurnal feeding behaviour of cows, limiting the inherent capacity and total production of pasture-based AMS. Our objective was to determine robot utilisation throughout 24 h by dairy cows, based on milking frequency (MF; milking events per animal per day) in a pasture-based AMS. Milking data were collected from January and February 2013 across 56 days, from a single herd of 186 animals (Bos taurus) utilising three Lely A3 robotic milking units, located in Tasmania, Australia. The dairy herd was categorised into three equal sized groups (n=62 per group) according to the cow’s mean daily MF over the duration of the study. Robot utilisation was characterised by an interaction (P< 0.001) between the three MF groups and time of day, with peak milking time for high MF cows within one h of a fresh pasture allocation becoming available, followed by the medium MF and low MF cows 2 and 4 h later, respectively. Cows in the high MF group also presented for milking between 2400 and 0600 h more frequently (77% of nights), compared to the medium MF group (57%) and low MF group (50%). This study has shown the formation of three distinct groups of cows within a herd, based on their MF levels. Further work is required to determine if this finding is replicated across other pasture-based AMS farms. 相似文献
5.
《Animal : an international journal of animal bioscience》2015,9(12):2039-2049
The throughput of automatic milking systems (AMS) is likely affected by differential traffic behavior and subsequent effects on the milking frequency and milk production of cows. This study investigated the effect of increasing stocking rate and partial mixed ration (PMR) on the milk production, dry matter intake (DMI), feed conversion efficiency (FCE) and use of AMS by two genotypes of Holstein-Friesian cows in mid-lactation. The study lasted 8 weeks and consisted in a factorial arrangement of two genotypes of dairy cattle, United States Holstein (USH) or New Zealand Friesian (NZF), and two pasture-based feeding treatments, a low stocking rate system (2 cows/ha) fed temperate pasture and concentrate, or a high stocking rate system (HSR; 3 cows/ha) fed same pasture and concentrate plus PMR. A total of 28 cows, 14 USH and 14 NZF, were used for comparisons, with 12 cows, six USH and six NZF, also used for tracking of animal movements. Data were analyzed by repeated measure mixed models for a completely randomized design. No differences (P>0.05) in pre- or post-grazing herbage mass, DMI and FCE were detected in response to increases in stocking rate and PMR feeding in HSR. However, there was a significant (P<0.05) grazing treatment×genotype×week interaction on milk production, explained by differential responses of genotypes to changes in herbage mass over time (P<0.001). A reduction (P<0.01) in hours spent on pasture was detected in response to PMR supplementation in HSR; this reduction was greater (P=0.01) for USH than NZF cows (6 v. 2 h, respectively). Regardless of the grazing treatment, USH cows had greater (P=0.02) milking frequency (2.51 v. 2.26±0.08 milkings/day) and greater (P<0.01) milk yield (27.3 v. 16.0±1.2 kg/day), energy-corrected milk (24.8 v. 16.5±1.0 kg/day), DMI (22.1 v. 16.6±0.8 kg/day) and FCE (1.25 v. 1.01±0.06 kg/kg) than NZF cows. There was also a different distribution of milkings/h between genotypes (P<0.001), with patterns of milkings/h shifting (P<0.001) as a consequence of PMR feeding in HSR. Results confirmed the improved FCE of grazing dairy cows with greater milk production and suggested the potential use of PMR feeding as a tactical decision to managing HSR and milkings/day in AMS farms. 相似文献
6.
《Animal : an international journal of animal bioscience》2015,9(8):1393-1396
Behavioural and cardiac responses of multiparous dairy cows (n=24) during milking in a 2×4 stall herringbone milking system were evaluated in this study. Heart rate (HR), parasympathetic tone index (high frequency component, HF) of heart rate variability and sympathovagal balance indicator LF/HF ratio (the ratio of the low frequency (LF) and the HF component) were analysed. Measurement periods were established as follows: (1) standing calm (baseline), (2) udder preparation, (3) milking, (4) waiting after milking in the milking stall and (5) in the night (2 h after milking). Step behaviour was recorded and calculated per minute for the three phases of the milking process (udder preparation, milking and waiting after milking). HR was higher during udder preparation and milking compared with baseline (P=0.03, 0.027, respectively). HF was significantly lower than baseline levels during waiting in the milking stall after milking (P=0.009), however, during udder preparation, milking and 2 h after milking did not differ from baseline (P>0.05, in either case). LF/HF during the three phases of the milking process differed neither from baseline levels nor from each other. Steps occurred more often during waiting after milking than during udder preparation (P=0.042) or during milking (23; P=0.017). Our results suggest that the milking procedure itself was not stressful for these animals. After milking (following the removal of the last teat cup and before leaving the milking stall), both decreased parasympathetic tone (lower HF) and increased stepping rate indicated a sensitive period for animals during this phase. 相似文献
7.
J.I. Gargiulo N.A. Lyons S.C. García 《Animal : an international journal of animal bioscience》2022,16(9):100605
There is a large variability in profitability and productivity between farms operating with automatic milking systems (AMS). The objectives of this study were to identify the physical factors associated with profitability and productivity of pasture-based AMS and quantify how changes in these factors would affect farm productivity. We utilised two different datasets collected between 2015 and 2019 with information from commercial pasture-based AMS farms. One contained annual physical and economic data from 14 AMS farms located in the main Australian dairy regions; the other contained monthly, detailed robot-system performance data from 23 AMS farms located across Australia, Ireland, New Zealand, and Chile. We used linear mixed models to identify the physical factors associated with different profitability (Model 1) and partial productivity measures (Model 2). Additionally, we conducted a Monte Carlo simulation to evaluate how changes in the physical factors would affect productivity. Our results from Model 1 showed that the two main factors associated with profitability in pasture-based AMS were milk harvested/robot (MH; kg milk/robot per day) and total labour on-farm (full-time equivalent). On average, Model 1 explained 69% of the variance in profitability. In turn, Model 2 showed that the main factors associated with MH were cows/robot, milk flow, milking frequency, milking time, and days in milk. Model 2 explained 90% of the variance in MH. The Monte Carlo simulation showed that if pasture-based AMS farms manage to increase the number of cows/robot from 54 (current average) to ~ 70 (the average of the 25% highest performing farms), the probability of achieving high MH, and therefore profitability, would increase from 23% to 63%. This could make AMS more attractive for pasture-based systems and increase the rate of adoption of the technology. 相似文献
8.
Herbage intake and behavioural adaptation of grazing dairy cows by restricting time at pasture under two feeding regimes 总被引:1,自引:0,他引:1
Pérez-Ramírez E Delagarde R Delaby L 《Animal : an international journal of animal bioscience》2008,2(9):1384-1392
The time at pasture of dairy cows is often restricted in the context of extending the grazing season in autumn or at the end of winter. The objective of our study was to evaluate the effects of a restriction of time at pasture on milk production, herbage intake and feeding behaviour in dairy cows according to feeding regime. The four treatments consisted of 4 h or 8 h of time at pasture per day tested under two feeding regimes combining rate of supplementation and herbage allowance: either a high rate of supplementation (10 kg dry matter (DM) of a maize silage-soya bean meal mixture in the ratio 87 : 13 on a % DM basis) with a low herbage allowance (6 kg DM/cow per day above 5 cm), or a low rate of supplementation (5 kg DM of the same supplement) with a high herbage allowance (11 kg DM/cow per day). The study was carried out according to a 4 × 4 Latin square design with four 2-week periods, with 48 mid-lactation Holstein cows. The cows in the 4-h treatment had access to pasture from 0900 h to 1300 h and those in the 8-h treatment from 0900 h to 1700 h. The supplement was given at 1830 h. When time at pasture was reduced from 8 h to 4 h per day, herbage intake decreased (9.9 v. 8.1 kg DM, P < 0.001), along with a fall in milk production (22.3 v. 21.2 kg, P < 0.001) and milk protein concentration (30.1 v. 29.6 g/kg, P < 0.001), while milk fat concentration increased (39.4 v. 39.9 g/kg, P < 0.05). The effect of time at pasture on milk production was slightly more marked on the low-supplement feeding regime (interaction P < 0.06). Reducing time at pasture by 4 h led to a sharp decrease in grazing time (327 v. 209 min, P < 0.001), but strongly increased the pasture intake rate (31 v. 39 g DM/min, P < 0.001) and the proportion of time spent grazing (0.68 v. 0.87, P < 0.001). Cows showed a stronger motivation for grazing when receiving the low-supplement feeding regime. In conclusion, we showed that reducing time at pasture from 8 to 4 h for cows receiving 5 to 10 kg DM of a maize silage-based supplement decreased moderately milk production and herbage intake, because of the capacity for behavioural adaptation by the grazing dairy cows. 相似文献
9.
《Animal : an international journal of animal bioscience》2014,8(7):1130-1138
The objective of this field study with an automatic milking system was to evaluate the effects of omitting the dry period on health and productivity during the subsequent lactation in dairy cows. A total of 98 German Simmental cows of six Southern German farms were assigned randomly to two experimental groups: The first group was dried-off 56 days before calving (D for dried-off, n=49), and the second group was milked continuously during this period until calving (CM for continuous milking, n=49). From the latter a third group emerged, including cows that dried-off themselves spontaneously (DS for dried-off spontaneously, n=14). Blood serum values of glucose, β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA) and IGF-1 showed most pronounced fluctuations in D cows. Over the entire study period, the concentrations of BHBA and NEFA were markedly lower in the CM and DS groups. Furthermore, IGF-1 concentration was lowest for D cows and also decrease in back fat thickness was more pronounced. Mean concentration of milk protein was markedly higher in CM and DS cows (3.70% and 3.71%) compared with D cows (3.38%). Owing to the lower 305-day milk yield (−15.6%) and the lower total milk yield (−3.1%), the total amount of produced protein in the subsequent lactation was 2.5% (6.8 kg) lower, although the additional protein amount in CM cows from week −8 to calving was 35.7 kg. The greatest benefit resulted from positive effects on fertility and the lower incidence of diseases: CM cows had their first oestrus 1 week earlier compared with D cows, they also conceived earlier and showed a significantly lower risk of developing hypocalcaemia, ketosis and puerperal disorders. The present study showed that the costs of medical treatment and milk losses were twice as high in D cows, compared with CM and DS cows, and thus the reduced costs because of the more stable health outweighed the financial losses of milk yield by +18.49 € per cow and lactation. 相似文献
10.
Kristensen T Oudshoorn F Munksgaard L Søegaard K 《Animal : an international journal of animal bioscience》2007,1(3):439-448
Extremely high nutrient loads have been reported in grazed grassland regimes compared with cutting regimes in some dairy systems that include the use of supplemental feeding. The aim of this study was, therefore, to investigate the effects on productivity and behaviour of high-yielding dairy cows with limited access to indoor feed and restriction in the time at pasture in a continuous stocking system. During a 6-week period from the start of the grazing season 2005, an experiment was conducted with the aim of investigating the effect of restrictive indoor feeding combined with limiting the time at pasture on the productivity and behaviour of high-yielding dairy cows (31.0 ± 5.4 kg energy-corrected milk) in a system based on continuous stocking. The herd was split into three groups allocated to three treatments consisting of 4, 6.5 and 9 h at pasture, respectively. Each group of cows grazed in separate paddocks with three replicates and was separately housed in a cubicle system with slatted floor during the rest of the day. All cows were fed the same amount of supplement, adjusted daily to meet the ad libitum indoor intake of the cows at pasture for nine hours. The herbage allowance was 1650 kg dry matter (DM) per ha, and the intake of supplemental feed was 9.1 kg DM per cow daily. The limitation of the time at pasture to 4 h in combination with restrictive indoor feeding reduced the daily milk, fat and protein yield and live weight compared with 9 h of access to pasture. The proportion of time during which the cows were grazing while at pasture increased from 0.64 to 0.86 and the estimated herbage intake per h at pasture decreased from 2547 g DM to1398 g DM, when time at pasture changed from 4 to 9 h. It can be concluded, that in systems with a high herbage allowance, the cow was able to compensate for 0.8 of the reduction in time at pasture by increasing the proportion of time spent grazing and presumably also both the bite rate and mass, although the latter two have not been directly confirmed in the present study. 相似文献
11.
《Animal : an international journal of animal bioscience》2017,11(7):1163-1173
As ruminants are able to digest fibre efficiently and assuming that competition for feed v. food use would intensify in the future, cereals and other field crops should primarily be destined to cover the dietary needs of humans and monogastric animals such as poultry and pigs. Farming systems with a reduced or absent concentrate supplementation, as postulated by organic agriculture associations, require adapted dairy cows. The aim of this experiment was to examine the impact of concentrate supplementation on milk production, grazing and rumination behaviour, feed intake, physical activity and blood traits with two Holstein-Friesian cow strains and to conclude the consequences for sustainable and organic farming. The experiment was a cross-over study and took place on an organic farm in Switzerland. In all, 12 Swiss Holstein-Friesian (HCH) cows and 12 New Zealand Holstein-Friesian (HNZ) cows, which were paired according to lactation number, days in milk and age for primiparous cows, were used. All cows grazed full time and were supplemented either with 6 kg/day of a commercial, organic cereal-grain mix or received no supplement. After an adaptation period of 21 days, a measurement period of 7 days followed, where milk yield and composition, pasture dry matter intake estimated with the n-alkane double-indicator technique, physical activity based on pedometer measurements, grazing behaviour recorded by automatic jaw movement recorder and blood samples were investigated. Non-supplemented cows had a lower milk yield and supplemented HCH cows produced more milk than supplemented HNZ cows. Grazing time and physical activity were greater for non-supplemented cows. Supplementation had no effect on rumination behaviour, but HNZ cows spent longer ruminating compared with HCH cows. Pasture dry matter intake decreased with the concentrate supplementation. Results of blood analysis did not indicate a strong negative energy balance for either non-supplemented or supplemented cows. Minor differences between cow strains in this short-term study indicated that both cow strains are equally suited for an organic pasture-based production system with no concentrate supplementation. Many factors such as milk yield potential, animal welfare and health, efficiency, grazing behaviour and social aspects influence the decision to supplement grazing dairy cows with concentrates. 相似文献
12.
《Animal : an international journal of animal bioscience》2019,13(6):1304-1310
Cow routines and behavioral responses are altered substantially following the installation of robot milking. The present study was designed to analyze the effect that switching from milking parlor to automatic milking system (AMS) had on the culling rate (due to various causes) of dairy cattle. For this purpose, culling records and causes for culling were tracked in 23 dairy farms in the Galicia region (NW Spain). The animals in these farms were monitored for 5 years. For the present study, that length of time was divided into three different stages, as follows: 2 years before switching from a milking parlor to AMS (stage 1), the 1st year following the implementation of AMS (stage 2) and the 2nd and 3rd years succeeding the implementation of AMS (stage 3). Cox models for survival analysis were used to estimate the time to culling due to different reasons during stage 1 in relation to stages 2 and 3. The data indicated that the risk of loss due to death or emergency slaughter decreased significantly following the installation of AMS. In contrast, the risk of culling due to low production, udder problems, infertility or lameness increased significantly. Low-production cows (such as cows in advanced lactation due to infertility) or sick cows (such as mastitic or lame cows) allegedly have a noticeable effect both on the performance and the amortization of the cost of AMS, which in turn would lead to a higher probability of elimination than in conventional systems. 相似文献
13.
Raussi S Jauhiainen L Saastamoinen S Siivonen J Hepola H Veissier I 《Animal : an international journal of animal bioscience》2011,5(3):428-432
We developed a method for studying the synchrony of behaviour based on calculations of overdispersion of a binomial process. The lying behaviour of cows was investigated under two different housing units inside the same barn. The first unit housed 30 cows undergoing conventional milking and the second unit housed 27 cows undergoing automatic milking. The lying behaviour of the cows was observed over 3 weeks in 12 periods of 6 h each. Every 5 min, we counted the number of cows lying down in the cubicles. As external cues, like feeding and conventional milking, can promote synchrony in dairy cows, we expected that cows conventionally milked would show more behavioural synchrony than automatically milked cows. Cows lied down synchronously in both units (overdispersion 1.67, P < 0.01). Lying synchrony tended to be slightly bigger in automatically than in conventionally milked cows (overdispersion 1.76 v. 1.58, P = 0.09), although the proportion of cows lying down was on average greater in conventionally than in automatically milked cows (60.7% v. 45.6%). This suggests that synchronized lying behaviour in cows is a constant phenomenon that depends on social facilitation rather than on external cues. The overdispersion index appears to be a useful tool for studying the synchrony of animal behaviour when observations are made at the group level. 相似文献
14.
《Animal : an international journal of animal bioscience》2016,10(9):1493-1500
Early detection of post-calving health problems is critical for dairy operations. Separating sick cows from the herd is important, especially in robotic-milking dairy farms, where searching for a sick cow can disturb the other cows’ routine. The objectives of this study were to develop and apply a behaviour- and performance-based health-detection model to post-calving cows in a robotic-milking dairy farm, with the aim of detecting sick cows based on available commercial sensors. The study was conducted in an Israeli robotic-milking dairy farm with 250 Israeli-Holstein cows. All cows were equipped with rumination- and neck-activity sensors. Milk yield, visits to the milking robot and BW were recorded in the milking robot. A decision-tree model was developed on a calibration data set (historical data of the 10 months before the study) and was validated on the new data set. The decision model generated a probability of being sick for each cow. The model was applied once a week just before the veterinarian performed the weekly routine post-calving health check. The veterinarian’s diagnosis served as a binary reference for the model (healthy–sick). The overall accuracy of the model was 78%, with a specificity of 87% and a sensitivity of 69%, suggesting its practical value. 相似文献
15.
《Animal : an international journal of animal bioscience》2016,10(9):1484-1492
Automatic milking systems (AMS), one of the earliest precision livestock farming developments, have revolutionized dairy farming around the world. While robots control the milking process, there have also been numerous changes to how the whole farm system is managed. Milking is no longer performed in defined sessions; rather, the cow can now choose when to be milked in AMS, allowing milking to be distributed throughout a 24 h period. Despite this ability, there has been little attention given to milking robot utilization across 24 h. In order to formulate relevant research questions and improve farm AMS management there is a need to determine the current knowledge gaps regarding the distribution of robot utilization. Feed, animal and management factors and their interplay on levels of milking robot utilization across 24 h for both indoor and pasture-based systems are here reviewed. The impact of the timing, type and quantity of feed offered and their interaction with the distance of feed from the parlour; herd social dynamics, climate and various other management factors on robot utilization through 24 h are provided. This novel review draws together both the opportunities and challenges that exist for farm management to use these factors to improved system efficiency and those that exist for further research. 相似文献
16.
Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system 总被引:2,自引:0,他引:2
The development and application of an algorithm to assess the ability of an infrared thermography (IRT) device to predict cows in estrus and about to ovulate was investigated. Twenty cows were synchronized using a controlled internal drug release and PGF2α. Vulval and muzzle temperatures were measured every 12 hours from controlled internal drug release insertion to 32 hours after PGF2α treatment and then every 4 hours until ovulation occurred or until 128 hours after PGF2α treatment (whichever occurred first). Thermal images obtained with a FLIR T620 series infrared camera were analyzed using ThermaCAM Researcher Professional 2.9 software. Cows were also monitored for behavioral signs of estrus and color changes of an Estrotect applied to the tail head of each cow 36 hours after PGF2α treatment. Algorithms were developed by adjusting body surface temperature of individual animals for ambient temperature and humidity during each observation period, and were expressed as a deviation from the baseline temperature. Of the 20 cows enrolled in this study, 12 (60%) ovulated. An IRT estrus alert was defined using different thresholds (D = 1 °C, 1.25 °C, and 1.5 °C). Sensitivity and specificity to predict estrus depended upon the chosen threshold level. At a threshold D = 1 °C, the highest sensitivity (92%; n = 11) and the lowest specificity (29%) and positive predictive value (64%) were observed. Conversely, D = 1.5 °C resulted in sensitivity of 75%, specificity of 57%, and positive predictive value of 69%. The mean ± standard deviation intervals between onset and the end of IRT estrus alert to ovulation were 30.7 ± 8.2 and 13.3 ± 7.7 hours, respectively. Ovulation occurred 24 to 47 hours after the onset of the IRT estrus alert for eight out of the 11 ovulated cows (73%). Although the sensitivity of the IRT alert was greater than visual observation (67%) and Estrotect activation (67%), the specificity and positive predictive value were lower than these two aids (i.e., the IRT overpredicted the incidence of ovulation). Results presented indicate that IRT shows some potential as an estrus detection aid; however, further studies investigating the potential to improve the specificity and capturing data throughout entire 21-day reproductive cycles would be worthwhile. 相似文献
17.
Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling 总被引:2,自引:0,他引:2
Silke Hafner Sebastian Unteregelsbacher Elke Seeber Becker Lena Xingliang Xu Xiaogang Li Georg Guggenberger Georg Miehe Yakov Kuzyakov 《Global Change Biology》2012,18(2):528-538
Since the late 1950s, governmental rangeland policies have changed the grazing management on the Tibetan Plateau (TP). Increasing grazing pressure and, since the 1980s, the privatization and fencing of pastures near villages has led to land degradation, whereas remote pastures have recovered from stronger overgrazing. To clarify the effect of moderate grazing on the carbon (C) cycle of the TP, we investigated differences in below‐ground C stocks and C allocation using in situ 13CO2 pulse labeling of (i) a montane Kobresia winter pasture of yaks, with moderate grazing regime and (ii) a 7‐year‐old grazing exclosure plot, both in 3440 m asl. Twenty‐seven days after the labeling, 13C incorporated into shoots did not differ between the grazed (43% of recovered 13C) and ungrazed (38%) plots. In the grazed plots, however, less C was lost by shoot respiration (17% vs. 42%), and more was translocated below‐ground (40% vs. 20%). Within the below‐ground pools, <2% of 13C was incorporated into living root tissue of both land use types. In the grazed plots about twice the amount of 13C remained in soil (18%) and was mineralized to CO2 (20%) as compared to the ungrazed plots (soil 10%; CO2 9%). Despite the higher contribution of root‐derived C to CO2 efflux, total CO2 efflux did not differ between the two land use types. C stocks in the soil layers 0–5 and 5–15 cm under grazed grassland were significantly larger than in the ungrazed grassland. However, C stocks below 15 cm were not affected after 7 years without grazing. We conclude that the larger below‐ground C allocation of plants, the larger amount of recently assimilated C remaining in the soil, and less soil organic matter‐derived CO2 efflux create a positive effect of moderate grazing on soil C input and C sequestration. 相似文献
18.
Restricting dairy cow access time to pasture in early lactation: the effects on milk production, grazing behaviour and dry matter intake 总被引:1,自引:0,他引:1
Kennedy E Curran J Mayes B McEvoy M Murphy JP O'Donovan M 《Animal : an international journal of animal bioscience》2011,5(11):1805-1813
One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22H cows grazed for 481 min/cow per day, which is significantly longer than all other treatments. The 2 × 3H animals grazed for 98% of the time, whereas the 2 × 3SH grazed for 79% of their time at pasture. Restricting pasture access time did not affect end body weight or body condition score. The results of this study indicate that restricting pasture access time of dairy cows in early lactation does not affect milk production performance. Furthermore, supplementing cows with grass silage does not increase milk production but reduces grazing efficiency. 相似文献
19.
Dumont B Garel JP Ginane C Decuq F Farruggia A Pradel P Rigolot C Petit M 《Animal : an international journal of animal bioscience》2007,1(7):1042-1052
Although stocking rate is a key management variable influencing the structure and composition of pastures, only few studies have simultaneously analysed the seasonal patterns of pasture use by cattle, and the adjustments the animals make to maintain intake of a high-quality diet over the grazing season. Therefore, over a 3-year study, we recorded diet selection, plot use and impact of heifers on sward structure and quality under three different stocking rates (0.6, 1.0 and 1.4 livestock units (LU) per ha) in a species-rich mountain pasture of central France. Measurements were made on three occasions between early June and the end of September each year. Overall, heifers selected for bites dominated by legumes or forbs, and against reproductive grass, whatever the stocking rate or season. Selection for tall mixed (P < 0.05), short mixed (P < 0.05) and short pure grass bites (P < 0.01) was more pronounced in plots grazed at the lowest stocking rate. Although heifers' selection for short patches decreased at the end of the season (P < 0.001), they continued to graze previously grazed areas, thus exhibiting a typical 'patch grazing' pattern, with the animals that grazed at the lowest stocking rate tending to better maintain their selection for short patches in September (treatment × period: P = 0.078). Neither diet quality nor individual animal performance were affected by the different stocking rate treatments despite high variability in the quantity and quality of herbage offered and differences in diet selection. However, at the 1.4 LU per ha stocking rate, the quantity of forage available per animal at the end of the season, 0.79 t dry matter (DM) per ha of green leaves with the median of sward height at 4.6 cm, approached levels limiting cattle's ability to compensate for the effects of increasing stocking rate. In plots grazed at 0.6 LU per ha, the total herbage biomass remained higher than 3 t DM per ha with more than 30% of plot area still covered by reproductive grass patches at the end of the grazing season, which in the medium term should affect the botanical composition of these pastures. Sward heterogeneity was high in plots grazed at 1.0 LU per ha, with sufficient herbage availability (1.1 t DM per ha of green leaves) to maintain animal performance, and more than 15% of plot area was kept at a reproductive stage at the end of the grazing season. Hence, it could represent the optimal balance to satisfy both livestock production and conservation management objectives. 相似文献
20.
《Animal : an international journal of animal bioscience》2012,6(10):1684-1693
Horses are often stabled in individual boxes, a method that does not meet their natural needs and may cause psychical and musculoskeletal diseases. This problem is particularly evident in Iceland, where horses often spend the long winter periods in cramped boxes. The aim of this study was to analyze the suitability of a group housing system in Iceland, but the results are also applicable to horses of other regions. Eight Icelandic horses were observed in an active stable system, and their behavior and time budget were recorded. Movement and lying behavior were studied with ALT (Activity, Lying, Temperature detection) pedometers. The effect of an automatic concentrate feeding station (CFS) on the horses’ behavior was examined. In the first period of investigation, the horses were fed concentrates manually, and in the second period, they were fed with the CFS. Additional behavioral observations and a determination of social hierarchy occurred directly or by video surveillance. The physical condition of the horses was recorded by body weight (BW) measurement and body condition scoring (BCS). The results showed a significant increase between the first and second trial periods in both the activity (P < 0.001) and the lying time (P = 0.003) of the horses with use of the CFS. However, there was no significant change in BW during the first period without the CFS (P = 0.884) or during the second period with the CFS (P = 0.540). The BCS of the horses was constant at a very good level during both trial periods, and the horses showed a low level of aggression, a firm social hierarchy and behavioral synchronization. This study concludes that group housing according to the active stable principle is a welfare-friendly option for keeping horses and is a suitable alternative to conventional individual boxes. 相似文献