首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Age‐associated decline in immunity to infection has been documented across multiple pathogens, yet the relative contributions of the aged priming environment and of lymphocyte‐intrinsic defects remain unclear. To address the impact of the aging environment on T‐cell priming, adult naïve OT‐I TCR transgenic CD8 T cells, specific for the H‐2Kb‐restricted immunodominant OVA257‐264 epitope, were transferred into adult or old recipient mice infected with the recombinant intracellular bacterium Listeria monocytogenes carrying the chicken ovalbumin protein (Lm‐OVA). We consistently found that adult OT‐I CD8 expansion was reduced in aged recipient mice, and this correlated with numeric, phenotypic, and functional defects selectively affecting CD8α+ dendritic cells (DC). Following Lm‐OVA infection, aged mice failed to accumulate CD8α+ DC in the spleen, and these cells expressed much lower levels of critical costimulatory molecules in the first three days following infection. Further, aged CD8α+ DC showed impaired uptake of the bacteria at very early time points following infection. Treatment of aged mice with Flt3 ligand (Flt3L) improved the number of DC present in the spleen prior to Lm‐OVA infection, and improved, but did not reconstitute, OT‐I expansion to Lm‐OVA infection. These results suggest that age‐associated changes in antigen uptake, pathogen sensing, and/or antigen presentation contribute to impaired adaptive immune responses to microbial pathogens with aging.  相似文献   

2.
A genetic absence of the common IFN-α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/-) mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+) T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+) T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+) T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/-) mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+) T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+) T cell response at a stage distinct from the initial priming event.  相似文献   

3.
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adults. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population and gene expression level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.  相似文献   

4.
Previous studies of mice have demonstrated that an orchestrated sequence of innate and adaptive immune responses is required to control West Nile virus (WNV) infection in peripheral and central nervous system (CNS) tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; also known as CD253) has been reported to inhibit infection with dengue virus, a closely related flavivirus, in cell culture. To determine the physiological function of TRAIL in the context of flavivirus infection, we compared the pathogenesis of WNV in wild-type and TRAIL(-/-) mice. Mice lacking TRAIL showed increased vulnerability and death after subcutaneous WNV infection. Although no difference in viral burden was detected in peripheral tissues, greater viral infection was detected in the brain and spinal cord at late times after infection, and this was associated with delayed viral clearance in the few surviving TRAIL(-/-) mice. While priming of adaptive B and T cell responses and trafficking of immune and antigen-specific cells to the brain were undistinguishable from those in normal mice, in TRAIL(-/-) mice, CD8(+) T cells showed qualitative defects in the ability to clear WNV infection. Adoptive transfer of WNV-primed wild-type but not TRAIL(-/-) CD8(+) T cells to recipient CD8(-/-) mice efficiently limited infection in the brain and spinal cord, and analogous results were obtained when wild-type or TRAIL(-/-) CD8(+) T cells were added to WNV-infected primary cortical neuron cultures ex vivo. Collectively, our results suggest that TRAIL produced by CD8(+) T cells contributes to disease resolution by helping to clear WNV infection from neurons in the central nervous system.  相似文献   

5.
Aging is associated with impaired vaccine efficacy and increased susceptibility to infectious and malignant diseases. CD8+ T‐cells are key players in the immune response against pathogens and tumors. In aged mice, the dwindling naïve CD8+ T‐cell compartment is thought to compromise the induction of de novo immune responses, but no experimental evidence is yet available in humans. Here, we used an original in vitro assay based on an accelerated dendritic cell coculture system in unfractioned peripheral blood mononuclear cells to examine CD8+ T‐cell priming efficacy in human volunteers. Using this approach, we report that old individuals consistently mount quantitatively and qualitatively impaired de novo CD8+ T‐cell responses specific for a model antigen. Reduced CD8+ T‐cell priming capacity in vitro was further associated with poor primary immune responsiveness in vivo. This immune deficit likely arises as a consequence of intrinsic cellular defects and a reduction in the size of the naïve CD8+ T‐cell pool. Collectively, these findings provide new insights into the cellular immune insufficiencies that accompany human aging.  相似文献   

6.
Many viruses induce type I interferon responses by activating cytoplasmic RNA sensors, including the RIG-I-like receptors (RLRs). Although two members of the RLR family, RIG-I and MDA5, have been implicated in host control of virus infection, the relative role of each RLR in restricting pathogenesis in vivo remains unclear. Recent studies have demonstrated that MAVS, the adaptor central to RLR signaling, is required to trigger innate immune defenses and program adaptive immune responses, which together restrict West Nile virus (WNV) infection in vivo. In this study, we examined the specific contribution of MDA5 in controlling WNV in animals. MDA5−/− mice exhibited enhanced susceptibility, as characterized by reduced survival and elevated viral burden in the central nervous system (CNS) at late times after infection, even though small effects on systemic type I interferon response or viral replication were observed in peripheral tissues. Intracranial inoculation studies and infection experiments with primary neurons ex vivo revealed that an absence of MDA5 did not impact viral infection in neurons directly. Rather, subtle defects were observed in CNS-specific CD8+ T cells in MDA5−/− mice. Adoptive transfer into recipient MDA5+/+ mice established that a non-cell-autonomous deficiency of MDA5 was associated with functional defects in CD8+ T cells, which resulted in a failure to clear WNV efficiently from CNS tissues. Our studies suggest that MDA5 in the immune priming environment shapes optimal CD8+ T cell activation and subsequent clearance of WNV from the CNS.  相似文献   

7.
The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.  相似文献   

8.
Immune responses wane during aging, posing challenges to the potential effectiveness of cancer immunotherapies. We previously demonstrated that in the context of a promising immunotherapeutic, OX40 agonist (αOX40), older animals exhibited impaired anti-tumor immune responses and diminished CD4 T cell effector differentiation. In this study, we hypothesized that tumor immune responses could be maintained during aging through caloric restriction (CR) or dietary supplementation with resveratrol (RES), a CR mimetic. Mice were placed on either a calorically restricted diet or a RES-formulated diet starting between 4 and 6 months of age and continued until mice reached 12 months of age. Tumor immune responses were assessed after challenging with either sarcoma or breast tumor cells followed by αOX40 treatment. Our results show that CR, but not RES, maintained OX40-mediated anti-tumor immunity. In addition, CR fully sustained antigen-specific CD4 T cell priming in aged hosts (12 months old), whereas tumor-specific CD8 T cell priming was not fully maintained compared to young reference animals (2 months old). Thus, CR appears to maintain immunological fitness of the CD4 T cell priming environment during aging, which is critical for optimal OX40-mediated responses.  相似文献   

9.
Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age‐related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow‐derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow‐derived macrophages and bone marrow monocytes did not exhibit age‐related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age‐related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell‐derived IL‐10 was increased in resting and LPS‐activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue‐resident peritoneal macrophages, but not by bone marrow‐derived macrophages/monocytes, and suggest that age‐related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.  相似文献   

10.
11.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.  相似文献   

12.
Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response.  相似文献   

13.
NK and NKT cell functions in immunosenescence   总被引:6,自引:0,他引:6  
Immunosenescence is defined as the state of dysregulated immune function that contributes to the increased susceptibility to infection, cancer and autoimmune diseases observed in old organisms, including humans. However, dysregulations in the immune functions are normally counterbalanced by continuous adaptation of the body to the deteriorations that occur over time. These adaptive changes are likely to occur in healthy human centenarians. Both innate (natural) and adaptive (acquired) immune responses decline with advancing age. Natural killer (NK) and natural killer T (NKT) cells represent the best model to describe innate and adaptive immune response in aging. NK and NKT cell cytotoxicity decreases in aging as well as interferon-gamma (IFN-gamma) production by both activated cell types. Their innate and acquired immune responses are preserved in very old age. However, NKT cells bearing T-cell receptor (TCR) gammadelta also display an increased cytotoxicity and IFN-gamma production in very old age. This fact suggests that NKT cells bearing TCRgammadelta are more involved in maintaining innate and adaptive immune response in aging leading to successful aging. The role played by the neuroendocrine-immune network and by nutritional factors, such as zinc, in maintaining NK and NKT cell functions in aging is discussed.  相似文献   

14.

Background

Rheumatoid arthritis (RA) most often begins in females in the fourth-fifth decade of their life, suggesting that the aging of the immune system (immunosenescence) has a major role in this disease. Therefore, in the present study, we sought to investigate the effect of age on arthritis susceptibility in BALB/c mice using the proteoglycan (PG)-induced arthritis (PGIA) model of RA.

Results

We have found that young, 1-month-old female BALB/c mice are resistant to the induction of PGIA, but with aging they become susceptible. PG-induced T cell responses decline with age, whereas there is a shift toward Th1 cytokines. An age-dependent decrease in T cell number is associated with an increased ratio of the memory phenotype, and lower CD28 expression. Antigen-presenting cells shifted from macrophages and myeloid dendritic cells in young mice toward B cells in older mice. The regulatory/activated T cell ratio decreases in older mice after PG injections indicating impaired regulation of the immune response.

Conclusion

We conclude that immunosenescence could alter arthritis susceptibility in a very complex manner including both adaptive and innate immunities, and it cannot be determined by a single trait. Cumulative alterations in immunoregulatory functions closely resemble human disease, which makes this systemic autoimmune arthritis model of RA even more valuable.  相似文献   

15.
While whole‐body irradiation (WBI) can induce some hallmarks of immune aging, (re)activation of persistent microbial infection also occurs following WBI and may contribute to immune effects of WBI over the lifespan. To test this hypothesis in a model relevant to human immune aging, we examined separate and joint effects of lifelong latent murine cytomegalovirus (MCMV) and of early‐life WBI over the course of the lifespan. In late life, we then measured the response to a West Nile virus (WNV) live attenuated vaccine, and lethal WNV challenge subsequent to vaccination. We recently published that a single dose of non‐lethal WBI in youth, on its own, was not sufficient to accelerate aging of the murine immune system, despite widespread DNA damage and repopulation stress in hematopoietic cells. However, 4Gy sub‐lethal WBI caused manifest reactivation of MCMV. Following vaccination and challenge with WNV in the old age, MCMV‐infected animals experiencing 4Gy, but not lower, dose of sub‐lethal WBI in youth had reduced survival. By contrast, old irradiated mice lacking MCMV and MCMV‐infected, but not irradiated, mice were both protected to the same high level as the old non‐irradiated, uninfected controls. Analysis of the quality and quantity of anti‐WNV immunity showed that higher mortality in MCMV‐positive WBI mice correlated with increased levels of MCMV‐specific immune activation during WNV challenge. Moreover, we demonstrate that infection, including that by WNV, led to MCMV reactivation. Our data suggest that MCMV reactivation may be an important determinant of increased late‐life mortality following early‐life irradiation and late‐life acute infection.  相似文献   

16.
Recent studies have established a protective role for T cells during primary West Nile virus (WNV) infection. Binding of CD40 by CD40 ligand (CD40L) on activated CD4+ T cells provides an important costimulatory signal for immunoglobulin class switching, antibody affinity maturation, and priming of CD8+ T-cell responses. We examined here the function of CD40-dependent interactions in limiting primary WNV infection. Compared to congenic wild-type mice, CD40(-/-) mice uniformly succumbed to WNV infection. Although CD40(-/-) mice produced low levels of WNV-specific immunoglobulin M (IgM) and IgG, viral clearance from the spleen and serum was not altered, and CD8+ T-cell priming in peripheral lymphoid tissues was normal. Unexpectedly, CD8+ T-cell trafficking to the central nervous system (CNS) was markedly impaired in CD40(-/-) mice, and this correlated with elevated WNV titers in the CNS and death. In the brains of CD40(-/-) mice, T cells were retained in the perivascular space and did not migrate into the parenchyma, the predominant site of WNV infection. In contrast, in wild-type mice, T cells trafficked to the site of infection in neurons. Beside its role in maturation of antibody responses, our experiments suggest a novel function of CD40-CD40L interactions: to facilitate T-cell migration across the blood-brain barrier to control WNV infection.  相似文献   

17.
An effective immunological eradication of tumors by the adaptive immune system depends on T cell priming, expansion of specific T cells and their effector function. It has been shown that either step may be impaired in the tumor-bearing host, and several strategies have been used to improve antitumor immune responses. In this regard, tumor-targeted IL2 therapy leads to the destruction of established melanoma metastases in fully immune competent mice as previously demonstrated. This effect has been attributed, but never directly confirmed, to the boost of antigen-experienced T cells. To this end, we demonstrate the absence of any antitumor effect of targeted IL2 in mice characterized by an impaired priming of T cell responses. Notably, in these animals tumor-targeted IL2 therapy induced tumor regression only after adoptive transfer of tumor-conditioned splenocytes. A detailed analysis revealed that T cells present within the transferred splenocytes were actively participating in the immune response as these were clonally expanded after targeted IL2 therapy. In summary, we demonstrate here that in LTα−/− mice lacking sufficient numbers of tumor-specific T cells only the passive transfer of such cells prior to therapy restores the efficacy of tumor-targeted IL2 therapy. Thus, the antitumor effect of tumor-targeted IL2 is indeed based on the boost of pre-existing T cell responses.  相似文献   

18.
Gigley JP  Khan IA 《PloS one》2011,6(6):e20838
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.  相似文献   

19.
Infants are protected from a severe respiratory syncytial virus (RSV) infection in the first months of life by maternal antibodies or by prophylactically administered neutralizing antibodies. Efforts are under way to produce RSV-specific antibodies with increased neutralizing capacity compared to the currently licensed palivizumab. While clearly beneficial during primary infections, preexisting antibodies might affect the onset of adaptive immune responses and the ability to resist subsequent RSV infections. Therefore, we addressed the question of how virus neutralizing antibodies influence the priming of subsequent adaptive immune responses. To test a possible role of the neonatal Fc receptor (FcRn) in this process, we compared the responses in C57BL/6 wild-type (WT) and FcRn−/− mice. We observed substantial virus-specific T-cell priming and B-cell responses in mice primed with RSV IgG immune complexes resulting in predominantly Th1-type CD4+ T-cell and IgG2c antibody responses upon live-virus challenge. RSV-specific CD8+ T cells were primed as well. Activation of these adaptive immune responses was independent of FcRn. Thus, neutralizing antibodies that localize to the airways and prevent infection-related routes of antigen processing can still facilitate antigen presentation of neutralized virus particles and initiate adaptive immune responses against RSV.  相似文献   

20.
It is known that aging decreases natural resistance to viral diseases due to dysfunctional innate and adaptive immune responses, but the nature of these dysfunctions, particularly in regard to innate immunity, is not well understood. We have previously shown that C57BL/6J (B6) mice lose their natural resistance to footpad infection with ectromelia virus (ECTV) due to impaired maturation and recruitment of natural killer (NK) cells to the draining popliteal lymph node (dLN). More recently, we have also shown that in young B6 mice infected with ECTV, the recruitment of NK cells is dependent on a complex cascade whereby migratory dendritic cells (mDCs) traffic from the skin to the dLN, where they produce CCL2 and CCL7 to recruit inflammatory monocytes (iMOs). In the dLN, mDCs also upregulate NKG2D ligands to induce interferon gamma (IFN‐γ) expression by group 1 innate lymphoid cells (G1‐ILCs), mostly NK in cells but also some ILC1. In response to the IFN‐γ, the incoming uninfected iMOs secret CXCL9 to recruit the critical NK cells. Here, we show that in aged B6 mice, the trafficking of mDCs to the dLN in response to ECTV is decreased, resulting in impaired IFN‐γ expression by G1‐ILCs, reduced accumulation of iMOs, and attenuated CXCL9 production by iMOs, which likely contributes to decrease in NK cell recruitment. Together, these data indicate that defects in the mDC response to viral infection during aging result in a reduced innate immune response in the dLN and contribute to increased susceptibility to viral disease in the aged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号