首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bats were netted at two sites over the forest rivers Narewka and Hwoźna in Białowieża Primeval Forest (E Poland), during the summer of 1994 and 1995. A total of 452 bats of 11 species were captured. The number of bats netted each night was positively correlated with the minimum air temperature. The rate at which the three commonest species —Nyctalus noctula, Myotis daubentonii andNyctalus leisleri — were caught varied significantly through the night, with a major peak after sunset. ForN. noctula air temperature was apparently positively related to the size of the morning peak.  相似文献   

2.
Predatory beetles are an important component of the natural enemy complex that preys on insect pests such as aphids within agroecosystems. Tracing diet origins and movement of natural enemies aids understanding their role in the food web and informs strategies for their effective conservation. Field sampling and laboratory experiments were carried out to examine the changes of carbon and nitrogen stable isotope ratios (δ13C and δ15N) among crops (cotton and maize), pests (cotton and maize aphids), and between wing and abdomen of predatory beetles, Propylea japonica, and to test the hypothesis that prey origins, proportions and feeding periods of the predatory beetles can be deduced by this stable isotope analysis. Results showed that the δ13C values both in wing and abdomen of adult P. japonica were changing from a C3- to a C4-based diet of aphids reared on maize or cotton, respectively; the isotope ratio of their new C4 substrates were detectable within 7 days and the δ15N values began to reflect their new C4 substrates within 3 days. The relationship between δ13C and δ15N values of P. japonica adults in wing or abdomen and diets of aphids from a C3-based resource transitioning to a C4-based resource were described best in linear or quadratic equations. Results suggest that integrative analysis of δ13C and δ15N values can be regarded as a useful method for quantifying to trace prey origins, proportions of diets and feeding periods of natural enemies. The results can provide quantifying techniques for habitat management of natural enemies.  相似文献   

3.
Stable isotope ratios of C and N in the bone tissue of three different skeletal elements (angular, cleithrum and vertebra) of three fish species from different evolutionary lineages (Clupeiformes, Atheriniformes and Notothenioidei) were determined before (δ13Cbulk and δ15Nbulk) and after demineralization and delipidation (δ13Cdml and δ15Ndml). One of the species had cellular bone and the other two had acellular bone. Results revealed that δ15N and δ13C values from different skeletal elements were interchangeable in species with acellular bone, but caution was needed in species with cellular bone, as δ15N values varied among skeletal elements. Furthermore, δ15Nbulk values were significantly lower than δ15Ndml values in the three species, thus suggesting that they are not comparable. This difference is probably because δ15Nbulk refers to total bone protein and δ15Ndml to collagen only.  相似文献   

4.
In May — August, bats were mist-netted along an altitudinal gradient of 350–1350 m a.s.l. in the Pol’ana Mts area, to verify the correlation of species number decrease and the increase in elevation, to find which species could be predictors of certain altitude levels and to compare the sexual occurrence of species in various altitudes. Seventeen bat species were recorded. The most abundant mist-netted species were Myotis daubentonii (16%), M. myotis (13%) and M. mystacinus (12%). Otherwise, the most frequently caught species were M. mystacinus (40%), Eptesicus serotinus, M. myotis (26%) and Nyctalus leisleri (23%). In this study at a local scale, from oak to spruce vegetation stages, decreasing number of species with increasing altitude was found. Species dominance of the individual altitudinal levels was significantly different (15 species up to 600 m a.s.l., six species over 1100 m a.s.l.). The results indicated that the occurrence of some bat species, due to their ecological adaptations, is more or less characteristic for higher or lower altitudes of the Western Carphathians. The “lowland” species were considered to be mainly E. serotinus, Pipistrellus pipistrellus, N. noctula, N. leisleri and M. daubentonii. In higher elevations (more than 850 m), the presence of reproductive females was not found, of all but one, N. noctula, of the “lowland” species which are breeding in the area. The “mountain” species were considered to be E. nilssonii and Plecotus auritus. The general occurrence and reproduction of M. mystacinus and Barbastella barbastellus, was not limited by elevation.  相似文献   

5.
The majority of landbird species feed their nestlings arthropods and variation in arthropod populations can impact reproductive outcomes in these species. Arthropod populations in turn are influenced by climate because temperature affects survival and reproduction, and larval development. Thus, climate factors have the potential to influence many bird species during their reproductive phases. In this study, we assessed climate factors that impact the diet of nestling White‐headed Woodpecker (Dryobates albolarvatus), an at‐risk keystone species in much of its range in western North America. To do this, we measured stable isotope signatures (δ13C and δ15N) in 152 nestlings across six years and linked variation in isotopic values to winter (December–February) and spring (June) precipitation and temperature using mixed effects models. We also explored habitat factors that may impact δ13C and δ15N and the relationship between δ15N and nest productivity. Last, we estimated isotopic niche width for nestlings in different watersheds and years using Bayesian standard ellipses, which allowed us to compare dietary niche width and overlap. We found that colder winter temperatures were associated with an increase in δ15N and δ15N levels had a weak positive relationship with nest productivity. We also found that sites with a more diverse tree community were associated with a broader isotopic niche width in nestlings. Our findings suggest that nestling diet is affected by climate, and under future warming climate scenarios, White‐headed Woodpecker nestling diet may shift in favor of lower trophic level prey (prey with lower δ15N levels). The impact of such changes on woodpecker populations merits further study.  相似文献   

6.
Parrotfish are critical consumers on coral reefs, mediating the balance between algae and corals, and are often categorised into three functional groups based on adult morphology and feeding behaviour. We used stable isotope analysis (δ13C, δ15N) to investigate size-related ontogenetic dietary changes in multiple species of parrotfish on coral reefs around Zanzibar. We compared signatures among species and functional groups (scrapers, excavators and browsers) as well as ontogenetic stages (immature, initial and terminal phase) within species. Stable isotope analysis suggests that ontogenetic dietary shifts occurred in seven of the nine species examined; larger individuals had enriched δ13C values, with no relationship between size and δ15N. The relationship between fish length and δ13C signature was maintained when species were categorised as scrapers and excavators, but was more pronounced for scrapers than excavators, indicating stronger ontogenetic changes. Isotopic mixing models classified the initial phase of both the most abundant excavator (Chlorurus sordidus) as a scraper and the immature stage of the scraper Scarus ghobban (the largest species) as an excavator, indicating that diet relates to size rather than taxonomy. The results indicate that parrotfish may show similar intra-group changes in diet with length, but that their trophic ecology is more complex than suggested by morphology alone. Stable isotope analyses indicate that feeding ecology may differ among species within functional groups, and according to ontogenetic stage within a species.  相似文献   

7.
Among the mechanisms that allow competing species to coexist are resource partitioning and dietary segregation. The current study uses multiple stable isotopes, carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S), to test the hypothesis that dietary segregation in cohabiting invasive mysids (Limnomysis benedeni and Katamysis warpachowskyi) and gammarids (Dikerogammarus villosus and Gammarus roeselii) will be reflected by differences in isotope values. Furthermore, IsoError mixing models were used to estimate the relative contributions of periphyton and seston to the invaders’ diets. Whole tissue δ13C, δ15N and δ34S analysis in L. benedeni and K. warpachowskyi imply that these sympatric, non-native mysids maintain differentiated feeding niches or resource partitioning by feeding on distinct components of the available food resources (predominantly seston by L. benedeni and periphyton by K. warpachowskyi). By contrast, the gammarids D. villosus (‘killer shrimp’) and G. roeselii exhibited no significant difference in δ13C and δ15N, indicating a considerable overlap between the dietary sources of these sympatric invaders. Feeding niche differentiation, irrespective of season or the nature of habitat invaded (lake or river), might facilitate the coexistence of invasive mysids in their ‘new’ environment by minimizing direct resource competition. The mutual interaction by the invasive gammarids, coupled with voracious behavior, could assist their success at co-invasion with serious implications for local biodiversity including the potential extinction of native species.  相似文献   

8.
Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.  相似文献   

9.
The diet of Japanese eels, Anguilla japonica, was investigated using stomach content and stable isotope analyses. Stable isotope enrichment of carbon and nitrogen (Δδ13C and Δδ15N) was first estimated for A. japonica by comparing the isotopic signatures (δ13C and δ15N) of reared eels to that of their food. The estimated isotope enrichment was then applied to the diet estimation of A. japonica in the Kojima Bay-Asahi River system, Japan, combined with conventional stomach content analysis. Stable isotope enrichment varied among tissues, from 0.2‰ to 0.8‰ for carbon and from 1.3‰ to 2.1‰ for nitrogen. Nitrogen isotope enrichment of A. japonica muscle estimated in this study was 2.1‰, which was different from the previously reported mean δ15N enrichment of several animals of 3.4‰. These results indicate that isotope-based diet estimations for A. japonica need to use species- and tissue-specific values of isotope enrichment. In the diet analysis, stomach contents and stable isotopes revealed that (1) A. japonica appear to usually feed on a single type of prey species in each feeding session, (2) principal prey species were mud shrimp, Upogebia major, in brackish Kojima Bay and crayfish, Procambarus clarkia, in the Asahi River, (3) A. japonica in Kojima Bay primarily depend on the pelagic food web as a carbon source due to mud shrimp being filter feeders and eels in the Asahi River primarily depend on the littoral food web. Based on these results and the recently reported eel movements between Kojima Bay and the Asahi River, it appears that A. japonica can adapt to various feeding environments as opportunists, but also utilize the food resources by targeting a single type of prey species during a single feeding session.  相似文献   

10.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

11.
Sympatric species are expected to differ in ecological requirements to minimize niche overlap and avoid competition. Here we assess the trophic interactions among three coexisting dolphin species from southern Brazil: the franciscana dolphin (Pontoporia blainvillei), the Guiana dolphin (Sotalia guianensis), and the Lahille's bottlenose dolphin (Tursiops truncatus gephyreus). We evaluated temporal variation in carbon (δ13C) and nitrogen (δ15N) isotope values of bone collagen to examine potential dietary shifts resulting from increased fishing activity over the past three decades. We estimated the degree of niche overlap among these species and the contribution of potential prey sources to their diet. δ15N values were consistent among species and across years, while δ13C values increased for Guiana dolphins and decreased for bottlenose dolphins, suggesting changes in diet and/or foraging habitats through time. The similar δ13C and δ15N values and the high niche overlap between Guiana and bottlenose dolphins indicate that these species are primarily feeding on demersal prey. The franciscana diet is primarily composed of pelagic prey, resulting in a lower niche overlap in comparison with the other dolphin species. Our study provides further information about the foraging ecology of this unique dolphin community in southern Brazil with implications for its management and conservation.  相似文献   

12.
We used three mitochondrial DNA fragments with different substitution rates (ND1, Cyt b and the CR) to infer phylogenetic relationships among six species of the genus Nyctalus, and compare levels of genetic divergence between the insular, vulnerable Nyctalus azoreum and its continental counterpart to assess the origins of the Azorean bat. The larger species found throughout the Palaearctic region (N. lasiopterus, N. aviator and N. noctula) share a unique chromosome formula (2n = 42) and form a monophyletic clade in our reconstructions. Nyctalus plancyi (= velutinus), a Chinese taxon with 2n = 36 chromosomes, is sometimes included in N. noctula, but is genetically very divergent from the latter and deserves full species status. All Cyt b and CR haplotypes of N. azoreum are closely related and only found in the Azores archipelago, but when compared to continental sequences of N. leisleri, levels of mtDNA divergence are unusually low for mammalian species. This contrasts with the high level of differentiation that N. azoreum has attained in its morphology, ecology, and echolocation calls, suggesting a recent split followed by fast evolutionary change. The molecular data suggest that N. azoreum originated from a European population of N. leisleri, and that the colonisation of the Azores occurred at the end of the Pleistocene. The Madeiran populations of N. leisleri also appear to have a European origin, whereas those of the Canary Islands probably came from North Africa. In spite of its recent origin and low genetic divergence, the Azorean bat is well differentiated and consequently represents a unique evolutionary unit with great conservation value.  相似文献   

13.
Stable nitrogen (δ15N) and carbon (δ13C) isotope ratios from muscle, liver and yolk were analysed from the mother and embryos of an ovoviviparous shark, Hexanchus griseus. Embryonic liver and muscle had similar δ15N and δ13C ratios or were depleted in heavy isotopes, compared to the same maternal somatic and reproductive yolk tissues, but no relationship existed between δ15N or δ13C and embryo length, as expected, because a switch to placental nourishment is lacking in this species. This study expands the understanding of maternal nourishment and embryonic stable isotope differences in ovoviviparous sharks.  相似文献   

14.
In the present study, we investigated ontogenetic diet shifts, feeding strategy, prey preferences, and basal food sources that sustain the Paradoxal frog (Pseudis minuta) based on stomach content, prey availability, and stable isotope (δ13C, δ15N) approaches. The feeding strategy analysis showed that the population can be considered a generalist species with each individual displaying a marked opportunism for different preys. Trophic positions estimated using nitrogen isotopic ratio (δ15N) revealed that tadpoles are primary consumers, but post-metamorphic individuals shifted to secondary and tertiary trophic levels as they increase in body size. A stable isotopic mixing model revealed that most of the carbon (0.61–0.72) sustaining the post-metamorphic P. minuta is derived from the aquatic rather than the adjacent terrestrial environment. This finding suggests that the post-metamorphic P. minuta is strongly dependent on carbon sources that primarily originate in aquatic systems, regardless of the terrestrial or aquatic origins of the arthropods in its diet. Our results indicated that this species is a generalist-opportunistic predator that derives most of their carbon sources from the aquatic environment where it shows preference for aquatic preys with higher individual biomasses.  相似文献   

15.
This study contrasted the influence of tertiary treated municipal wastewater effluent (MWWE) exposure on the abundance, food selection (stomach contents), and carbon (δ13C) and nitrogen (δ15N) stable isotope signatures of Rainbow Darter (Etheostoma caeruleum) and Greenside Darter (Etheostoma blennioides) in a small receiving stream in southern Ontario, Canada. Despite tertiary treatment resulting in relatively high effluent quality, there is continued concern for environmental degradation downstream of the effluent outfall because of the relatively small size of the receiving environment and recent studies that have indicated changes occurring in relative fish abundance and stable isotope signatures. In July and August of 2009 fish and benthic invertebrate communities were examined along with analysis of δ13C and δ15N of the most common species to determine the effects of effluent exposure on the food web. Rainbow Darter increased in abundance and their δ15N values were enriched immediately downstream of the effluent outfall throughout the summer (July and August). In contrast, while δ15N of Greenside Darter followed a similar pattern in July, they were not enriched in August. The benthic community was changed immediately downstream of the outfall and the δ15N of invertebrates was enriched, similar to that observed in Rainbow Darter. Stomach contents of the two darter species diverged the most in the summer possibly explaining some of the changes in δ13C and δ15N among sites. It is possible that Greenside Darter fed on less enriched food downstream of the outfall, or fed outside of the effluent plume during the summer. Rainbow Darter may be able to exploit the changes in habitat and prey composition, resulting in differences in relative abundance of darters immediately downstream of the effluent outfall.  相似文献   

16.
We compared δ13C and δ15N values of muscle with fin from juvenile Chinese sturgeon (Acipenser sinensis), to evaluate the feasibility of using nonlethal (fin) as an alternative to lethal (muscle) sampling. Size and lipid effect on the relationship between fin and muscle were also investigated. Dorsal muscle (DM) and fin clip (FC) were collected from A. sinensis with different body length (120–373 mm) in the Yangtze Estuary for isotope analysis. The result showed that (1) muscle isotope values could estimated by the values of fin, from either use the regression model (δ13CDM = 0.939 × FC ? 2.577; δ15NDM = 0.737 × FC + 4.638) or constants factors (δ13CDM = δ13CFC ? 1.27; δ15NDM = δ15NFC + 0.59); (2) no size‐based relationships with δ13C and δ15N from either fin or muscle; (3) lipid extraction significantly improving the fin and muscle regression model fit for both δ13C and δ15N values. Therefore, this study support the use of nonlethal fin tissues for isotope analysis of juvenile A. sinensis, and will allow trophic studies to avoid the effect of lipid accumulation from muscle.  相似文献   

17.
Stable nitrogen (δ15N) and carbon (δ13C) isotopes of Atlantic sharpnose shark Rhizoprionodon terraenovae embryos and mothers were analysed. Embryos were generally enriched in 15N in all studied tissue relative to their mothers' tissue, with mean differences between mother and embryo δ15N (i.e. Δδ15N) being 1·4‰ for muscle, 1·7‰ for liver and 1·1‰ for cartilage. Embryo muscle and liver were enriched in 13C (both Δδ13C means = 1·5‰) and embryo cartilage was depleted (Δδ13C mean = ?1·01‰) relative to corresponding maternal tissues. While differences in δ15N and δ13C between mothers and their embryos were significant, muscle δ15N values indicated embryos to be within the range of values expected if they occupied a similar trophic position as their respective mothers. Positive linear relationships existed between embryo total length (LT) and Δδ15N for muscle and liver and embryo LT and Δδ13C for muscle, with those associations possibly resulting from physiological differences between smaller and larger embryos or differences associated with the known embryonic nutrition shift (yolk feeding to placental feeding) that occurs during the gestation of this placentatrophic species. Together these results suggest that at birth, the δ15N and δ13C values of R. terraenovae are likely higher than somewhat older neonates whose postpartum feeding habits have restructured their isotope profiles to reflect their postembryonic diet.  相似文献   

18.
This study examines resource use (diet, habitat use, and trophic level) within and among demographic groups (males, females, and juveniles) of bottlenose dolphins (Tursiops truncatus). We analyzed the δ13C and δ15N values of 15 prey species constituting 84% of the species found in stomach contents. We used these data to establish a trophic enrichment factor (TEF) to inform dietary analysis using a Bayesian isotope mixing model. We document a TEF of 0‰ and 2.0‰ for δ13C and δ15N, respectively. The dietary results showed that all demographic groups relied heavily on low trophic level seagrass‐associated prey. Bayesian standard ellipse areas (SEAb) were calculated to assess diversity in resource use. The SEAb of females was nearly four times larger than that of males indicating varied resource use, likely a consequence of small home ranges and habitat specialization. Juveniles possessed an intermediate SEAb, generally feeding at a lower trophic level compared to females, potentially an effect of natal philopatry and immature foraging skills. The small SEAb of males reflects a high degree of specialization on seagrass associated prey. Patterns in resource use by the demographic groups are likely linked to differences in the relative importance of social and ecological factors.  相似文献   

19.
We present a comparison of feather stable isotope (δ13C, δ15N) patterns representing the habitat and diet conditions for two subspecies of willow warblers Phylloscopus trochilus that breed in parapatry, but winter in different regions of sub‐Saharan Africa. Previous analyses have shown that on average winter moulted innermost primaries (P1) show subspecific differences in δ15N values, although individuals show substantial variation for both δ13C and δ15N within the subspecies. We examined whether corresponding variation in the timing of the winter moult, as reflected by consistent intra‐wing correlations for individual's δ13C and δ15N values, could explain some of the previously observed isotopic variation. Further, differential subspecific adaptations to winter precipitation patterns across Africa might result in a variable degree of site fidelity or itinerancy during moult. We found no consistent trend in isotopic values from innermost to outermost primaries, thus inter‐individual variation in the timing of moult does not explain the subspecific isotopic variation for P1. Patterns in wing feather δ13C and δ15N values indicated that 41% of the individuals from both subspecies shifted their diet or habitats during winter moult. Importantly, despite well‐documented itinerancy in willow warblers during the winter, 59% of the individuals had feather isotope values consistent with stable use of habitats or diets during winter moult. Repeatability analyses suggest that individuals of both subspecies initiate moult in similar habitats from year‐to‐year while feeding on isotopically similar diets.  相似文献   

20.
We evaluated whether existing assumptions regarding the trophic ecology of a poorly‐studied predator guild, northwest (NW) Atlantic skates (family: Rajidae), were supported across broad geographic scales. Four hypotheses were tested using carbon (δ13C) and nitrogen (δ15N) stable isotope values as a proxy for foraging behavior: 1) species exhibit ontogenetic shifts in habitat and thus display a shift in 13C with differential use of the continental shelf; 2) species exhibit ontogenetic prey shifts (i.e. from smaller to larger prey items) and become enriched in 15N; 3) individuals acquire energy from spatially confined local resource pools and exhibit limited displacement; and 4) species exhibit similarly sized and highly overlapping trophic niches. We found some evidence for ontogenetic shifts in habitat‐use (δ13C) for thorny and little skate and diet (δ15N) of thorny and winter skate and hypothesize that individuals exhibit gradual trophic niche transition, especially in δ15N space, rather than a clear and distinct shift in diet throughout ontogeny. Spatial isoscapes generated for little, thorny, and winter skate highlighted distinct spatial patterns in isotopic composition across the coastal shelf. For little and thorny skate, patterns mimicked expected spatial variability in the isotopic composition of phytoplankton/POM, suggesting limited displacement and utilization of spatially confined resource pools. Winter skate, however, exhibited a much narrower range of δ13C and δ15N values, suggesting individuals may use resources from a more confined latitudinal range. Although high total trophic niche overlap was observed between some species (e.g. little and thorny skate), sympatric species (e.g. little and winter skate) exhibited a degree of trophic niche separation. These findings offer new insight into the trophic dynamics of a poorly‐studied, vulnerable group of predators, and highlight a need to re‐examine assumptions pertaining to aspects of their ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号