首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sub-acute ruminal acidosis (SARA) is sometimes observed along with reduced milk fat synthesis. Inconsistent responses may be explained by dietary fat levels. Twelve ruminally cannulated cows were used in a Latin square design investigating the timing of metabolic and milk fat changes during Induction and Recovery from SARA by altering starch levels in low-fat diets. Treatments were (1) SARA Induction, (2) Recovery and (3) Control. Sub-acute ruminal acidosis was induced by feeding a diet containing 29.4% starch, 24.0% NDF and 2.8% fatty acids (FAs), whereas the Recovery and Control diets contained 19.9% starch, 31.0% NDF and 2.6% FA. Relative to Control, DM intake (DMI) and milk yield were higher in SARA from days 14 to 21 and from days 10 to 21, respectively (P < 0.05). Milk fat content was reduced from days 3 to 14 in SARA (P < 0.05) compared with Control, while greater protein and lactose contents were observed from days 14 to 21 and 3 to 21, respectively (P < 0.05). Milk fat yield was reduced by SARA on day 3 (P < 0.05), whereas both protein and lactose yields were higher on days 14 and 21 (P < 0.05). The ruminal acetate-to-propionate ratio was lower, and the concentrations of propionate and lactate were higher in the SARA treatment compared with Control on day 21 (P < 0.05). Plasma insulin increased during SARA, whereas plasma non-esterified fatty acids and milk β-hydroxybutyrate decreased (P < 0.05). Similarly to fat yield, the yield of milk preformed FA (>16C) was lower on day 3 (P < 0.05) and tended to be lower on day 7 in SARA cows (P < 0.10), whereas yield of de novo FA (<16C) was higher on day 21 (P < 0.01) in the SARA group relative to Control. The t10- to t11-18:1 ratio increased during the SARA Induction period (P < 0.05), but the concentration of t10-18:1 remained below 0.5% of milk fat, and t10,c12 conjugated linoleic acid remained below detection levels. Odd-chain FA increased, whereas branched-chain FA was reduced during SARA Induction from days 3 to 21 (P < 0.05). Sub-acute ruminal acidosis reduced milk fat synthesis transiently. Such reduction was not associated with ruminal biohydrogenation intermediates but rather with a transient reduction in supply of preformed FA. Subsequent rescue of milk fat synthesis may be associated with higher availability of substrates due to increased DMI during SARA.  相似文献   

2.
Glucocorticoids (GCs) are vital for embryonic development and their bioactivity is regulated by the intracellular metabolism involving 11β-hydroxysteroid dehydrogenases (11β-HSDs) and 20-hydroxysteroid dehydrogenase (20-HSD). Here we sought to reveal the differences in egg deposition of corticosterone and embryonic expression of corticosterone metabolic enzymes between slow and fast growing broiler chickens (Gallus gallus). Eggs of fast-growing breed contained significantly higher (P < 0.05) corticosterone in the yolk and albumen, compared with that of a slow-growing breed. 11β-HSD1 and 11β-HSD2 were expressed in relatively higher abundance in the liver, kidney and intestine, following similar tissue-specific ontogenic patterns. In the liver, expression of both 11β-HSD1 and 11β-HSD2 was upregulated (P < 0.05) towards hatching, yet 20-HSD displayed distinct pattern showing a significant decrease (P < 0.05) on posthatch day 1 (D1). Hepatic mRNA expression of 11β-HSD1 and 11β-HSD2 was significantly higher in fast-growing chicken embryos at all the embryonic stages investigated and so was the hepatic protein content on embryonic day of 14 (E14) for 11β-HSD1 and on E14 and D1 for 11β-HSD2. 20-HSD mRNA was higher in fast-growing chicken embryos only on E14. Our data provide the first evidence that egg deposition of corticosterone, as well as the hepatic expression of glucocorticoid metabolic enzymes, differs between fast-growing and slow-growing chickens, which may account, to some extent, for the breed disparities in embryonic development.  相似文献   

3.
Feeding a high concentrate (HC) diet is a widely used strategy for supporting high milk yields, yet it may cause certain metabolic disorders. This study aimed to investigate the changes in milk production and hepatic metabolism in goats fed different proportions of concentrate in the diet for 10 weeks. In total, 12 mid-lactating goats were randomly assigned to an HC diet (65% concentrate of dry matter, n=6) or a low concentrate (LC) diet (35% concentrate of dry matter, n=6). Compared with LC, HC goats produced greater amounts of volatile fatty acids and produced more milk and milk lactose, fat and protein (P<0.01). HC goats showed a greater concentration of ATP, NAD, plasma non-esterified fatty acids and hepatic triglycerides than LC goats (P<0.05). Real-time PCR results showed that messenger RNA (mRNA) expression of gluconeogenic genes, namely, glucose-6-phosphatase, pyruvate carboxylase and phosphoenolpyruvate carboxykinase were significantly up-regulated and accompanied greater gluconeogenic enzyme activities in the liver of HC goats. Moreover, the expression of hepatic lipogenic genes including sterol regulatory element-binding protein 1c, fatty acid synthase and diacylglycerol acyltransferase mRNA was also up-regulated by the HC diet (P<0.05). HC goats had greater hepatic phosphorylation of AMP-activated protein kinase than LC (P<0.05). Furthermore, histone-3-lysine-27-acetylation contributed to this elevation of gluconeogenic gene expression. These results indicate that lactating goats fed an HC diet for 10 weeks produced more milk, which was associated with up-regulated gene expression and enzyme activities involved in hepatic gluconeogenesis and lipogenesis.  相似文献   

4.
Recent investigations have demonstrated that activation of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in liver and adipose tissue is closely related to the pathogenesis of obesity and diabetes. However, the relationship between alteration of 11β-HSD1 and the pathogenesis of type 2 diabetes in skeletal muscle is still unclear. A rat model of Type 2 diabetes was developed by high fat diet feeding combined with multiple low dose streptozotocin injection (30 mg/kg, i.p. twice). Intraperitoneal glucose tolerance test, insulin tolerance test were performed. Fasting blood glucose, fasting insulin, total cholesterol, triglyceride were measured. The protein and mRNA level of 11β-HSD1 and glucocorticoid receptor in gastrocnemius muscle were determined. The alteration of insulin signaling pathway related protein was investigated. We found that the protein levels of 11β-HSD1 and glucocorticoid receptor were significantly increased (P < 0.05); the mRNA level of 11β-HSD1 was also elevated (P < 0.05); the mRNA level of glucocorticoid receptor was decreased (P < 0.05). After insulin stimulation, diabetic rats had no significant changes in the level of the insulin receptor β-subunit (IR-β), AKT, as in phosphorylated AKT in the gastrocnemius muscle compared to its basal state. Similar results were observed in the protein expression level of glucose transporter 4 (GLUT4). Our data indicate that the alteration of 11β-HSD1 at protein and mRNA level may be related to the abnormality of insulin signal pathway in skeletal muscle, this effect may be mediated by glucocorticoid receptor.  相似文献   

5.
This study was aimed to investigate the impact of subacute ruminal acidosis (SARA) on the diversity of liquid (LAB) and solid-associated bacteria (SAB) following high-grain feeding. Six ruminally cannulated goats were divided into two groups: one group was fed a hay diet (COD), and the other group was fed a high grain diet (SAID). Rumen liquids and rumen solids were sampled after 2 weeks adaption. SARA was diagnosed with a pH below 5.8 for 8 h. SAID decreased ruminal pH (P < 0.001) and increased the acetate (P = 0.017), propionate (P = 0.001), butyrate (P < 0.001) and total volatile fatty acid (P < 0.001) concentration in rumen compared with the COD. Denaturing gradient gel electrophoresis fingerprints analysis revealed a clear separation between both the diet and the fraction of rumen digesta in bacterial communities. Pyrosequencing analysis showed that the proportion of phylum Bacteroidetes in the SAID-LAB and SAID-SAB communities was less than in the COD group, whereas the SAID group had a greater percentage of Firmicutes in both the LAB and SAB libraries. UniFrac analyses and a Venn diagram revealed a large difference between the two diets in the diversity of rumen bacterial communities. Overall, our findings revealed that SARA feeding did alter the community structure of rumen liquids and rumen solids. Thus, manipulation of dietary factors, such as ratio of forage to concentrate may have the potential to alter the microbial composition of rumen liquid and rumen solid.  相似文献   

6.
7.
The objective of this study was to investigate the effects of maternal protein or energy restriction on hormonal and metabolic status of pregnant goats during late gestation and their postnatal male kids. Forty-five pregnant goats were fed a control (CON), 40% protein-restricted (PR) or 40% energy-restricted (ER) diet from 90 days of gestation until parturition. Plasma of mothers (90, 125 and 145 days of gestation) and kids (6 weeks of age) were sampled to determine metabolites and hormones. Glucose concentration for pregnant goats subjected to PR or ER was less (P<0.001) than that of CON goats at 125 and 145 days of gestation. However, plasma nonesterified fatty acids concentration was greater (P<0.01) at 125 and 145 days for PR and ER than CON. Protein restriction increased (P<0.01) maternal cortisol concentration by 145 days of gestation, and ER decreased (P<0.01) maternal insulin concentration at 125 days of gestation. Moreover, maternal amino acid (AA) concentrations were affected by nutritional restriction, with greater (P<0.05) total AA (TAA) and nonessential AA (NEAA) for PR goats but less (P<0.05) TAA and NEAA for ER goats at 125 days of gestation. After 6 weeks of nutritional recovery, plasma concentrations of most metabolic and hormonal parameters in restricted kids were similar to CON kids, except for reduced (P<0.05) insulin concentration in ER, and reduced (P<0.05) Asp concentration in PR and ER kids. These results provide information on potential metabolic mechanisms responsible for fetal programming.  相似文献   

8.
Imbalanced maternal nutrition during gestation can cause alterations of the hypothalamic-pituitary-adrenal (HPA) system in offspring. The present study investigated the effects of maternal low- and high-protein diets during gestation in pigs on the maternal-fetal HPA regulation and expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 11β-HSD2) and c-fos mRNAs in the placenta and fetal brain. Twenty-seven German Landrace sows were fed diets with high (HP, 30%), low (LP, 6.5%) or adequate (AP, 12.1%) protein levels made isoenergetic by varying the carbohydrate levels. On gestational day 94, fetuses were recovered under general anesthesia for the collection of blood, brain and placenta samples. The LP diet in sows increased salivary cortisol levels during gestation compared to the HP and AP sows and caused an increase of placental GR and c-fos mRNA expression. However, the diurnal rhythm of plasma cortisol was disturbed in both LP and HP sows. Total plasma cortisol concentrations in the umbilical cord vessels were elevated in fetuses from HP sows, whereas corticosteroid-binding globulin levels were decreased in LP fetuses. In the hypothalamus, LP fetuses displayed an enhanced mRNA expression of 11β-HSD1 and a reduced expression of c-fos. Additionally, the 11β-HSD2 mRNA expression was decreased in both LP and HP fetuses. The present results suggest that both low and high protein∶carbohydrate dietary ratios during gestation may alter the expression of genes encoding key determinants of glucocorticoid hormone action in the fetus with potential long-lasting consequences for stress adaptation and health.  相似文献   

9.
Cereal grains treated with organic acids were proved to increase ruminal resistant starch and can relieve the risk of ruminal acidosis. However, previous study mainly focussed on acid-treated barley, the effects of organic acid-treated corn is still unknown. The objectives of this study were to evaluate whether feeding ground corn steeped in citric acid (CA) would affect ruminal pH and fermentation patterns, milk production and innate immunity responses in dairy goats. Eight ruminally cannulated Saanen dairy goats were used in a crossover designed experiment. Each experimental period was 21 day long including 14 days for adaption to new diet and 7 days for sampling and data collection. The goats were fed high-grain diet contained 30% hay and 70% corn-based concentrate. The corn was steeped either in water (control) or in 0.5% (wt/vol) CA solution for 48 h. Goats fed CA diet showed improved ruminal pH status with greater mean and minimum ruminal pH, and shorter (P<0.05) duration of ruminal pH<5.6 and less area of ruminal pH<5.6, 5.8 and 6.0. Concentration of total volatile fatty acid and molar proportion of propionate were less but the molar proportion of acetate was greater (P<0.05) in goats fed the CA diet than the control diet. Concentration of ruminal lipopolysaccharide (LPS) was lower (P<0.05) and that of lactic acid also tended (P<0.10) to be lower in goats fed CA than the control. Although dry matter intake, actual milk yield, yield and content of milk protein and lactose were not affected, the milk fat content and 4% fat-corrected milk tended (P<0.10) to be greater in goats fed CA diet. For the inflammatory responses, peripheral LPS did not differ, whereas the concentration of LPS binding protein and serum amyloid A tended (P<0.10) to be less in goats fed CA diet. Similarly, goats fed CA diet had less (P<0.05) concentration of haptoglobin and tumour necrosis factor. These results indicated that feeding ground corn treated with CA effectively improved ruminal pH status, thus alleviated the risk of ruminal acidosis, reduced inflammatory response, and tend to improve milk yield and milk fat test.  相似文献   

10.
The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 1013 M cortisol, whereas 1 × 105 M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations by 11β-HSD1 appears to modulate expression of inflammatory cytokines in NHEKs.  相似文献   

11.
This study investigated the effects of disodium fumarate (DF) on methane emission, ruminal fermentation and microbial abundance in goats under different forage (F) : concentrate (C) ratios and fed according to maintenance requirements. Four ruminally fistulated, castrated male goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and the main factors being the F : C ratios (41 : 59 or 58 : 42) and DF supplementation (0 or 10 g/day). DF reduced methane production (P < 0.05) on average by 11.9%, irrespective of the F : C ratio. The concentrations of total volatile fatty acids, acetate and propionate were greater in the rumen of goats supplemented with DF (P < 0.05), whereas the abundance of methanogens was lower (P < 0.05). In high-forage diets, the abundance of Selenomonas ruminantium, a fumarate-reducing bacterium, was greater in the rumen of goats supplemented with DF. The abundance of fungi, protozoa, Ruminococus flavefaciens and Fibrobacter succinogenes were not affected by the addition of DF. Variable F : C ratios affected the abundance of methanogens, fungi and R. flavefaciens (P < 0.05), but did not affect methane emission. The result implied that DF had a beneficial effect on the in vivo rumen fermentation of the goats fed diets with different F : C ratios and that this effect were not a direct action on anaerobic fungi, protozoa and fibrolytic bacteria, the generally recognized fiber-degrading and hydrogen-producing microorganisms, but due to the stimulation of fumarate-reducing bacteria and the depression of methanogens.  相似文献   

12.
Grain-rich diets often lead to subacute ruminal acidosis (SARA) impairing rumen and systemic cattle health. Recent data suggest beneficial effects of a clay mineral (CM)- based product on the rumen microbiome of cattle during SARA. This study sought to investigate whether the CM supplementation can counteract SARA-induced perturbations of the bovine systemic health. The study used an intermittent diet-induced SARA-model with eight dry Holstein cows receiving either no additive as control or CM via concentrates (n=8 per treatment). Cows received first a forage diet (Baseline) for 1 week, followed by a 1-week SARA-challenge (SARA 1), a 1-week recovery phase (Recovery) and finally a second SARA-challenge for 2 weeks (SARA 2). Cows were monitored for feed intake, reticular pH and chewing behavior. Blood samples were taken and analyzed for metabolites related to glucose and lipid metabolism as well as liver health biomarkers. In addition, a targeted electrospray ionization-liquid chromatography-MS-based metabolomics approach was carried out on the plasma samples obtained at the end of the Baseline and SARA 1 phase. Data showed that supplementing the cows’ diet with CM improved ruminating chews per regurgitated bolus by 16% in SARA 1 (P=0.01) and enhanced the dry matter intake during the Recovery phase (P=0.05). Moreover, the SARA-induced decreases in several amino acids and phosphatidylcholines were less pronounced in cows receiving CM (P≤0.10). The CM-supplemented cows also had lower concentrations of lactate (P=0.03) and biogenic amines such as histamine and spermine (P<0.01) in the blood. In contrast, the concentration of acylcarnitines with key metabolic functions was increased in the blood of treated cows (P≤0.05). In SARA 2, the CM-cows had lower concentrations of the liver enzymes aspartate aminotransferase and γ-glutamyltransferase (P<0.05). In conclusion, the data suggest that supplementation of CM holds the potential to alleviate the negative effects of high-grain feeding in cattle by counteracting multiple SARA-induced perturbations in the systemic metabolism and liver health.  相似文献   

13.
Ruminant animals are generally fed with starch-rich grain as the main energy source, and the incidence of metabolic diseases such as subacute ruminal acidosis (SARA) is high due to the intensive farming. Thiamin has been reported to alleviate SARA caused by high-concentrate diets, but the exact mechanism is not well understood. The goal of this study was to examine the role of thiamine in intestinal inflammation and microbiota caused by high-concentrate diets. The SARA model was induced by low neutral detergent fibre/starch ration to study the effects of thiamine on intestinal tissue structure and microbiota. 18 mid-lactation (148 ± 3 d in milk; milk yield = 0.71 ± 0.0300 kg/d) Saanen goats (BW = 36.5 ± 1.99 kg; body condition score = 2.73 ± 0.16, where 1 = emaciated and 6 = obese) in parities 1 or 2 were selected. The goats were randomly divided into three groups with six replicates: (1) control diet (C; concentrate:forage 30:70), (2) high-concentrate diet (H; concentrate:forage 70:30), and (3) high-concentrate diet with 200 mg of thiamine/kg of DM intake (H + T;concentrate:forage 70:30). The experimental period was lasted for 56 d. The small and large intestine, expression of inflammatory factor genes, tight junction protein genes, total antioxidant capacity, and intestinal microbiota were measured. The results showed that SARA was observed in treatment H, whereas rumen fluid pH was improved in treatment H + T. Treatment H + T also significantly repaired the intestinal tissue structure damaged by SARA, improved the total antioxidant capacity of the small intestinal mucosa, reduced mRNA expression of inflammatory factors in the small intestine tissue, and increased the mRNA expression of tight junction genes in small intestine tissue. The high-concentrate diet reduced the diversity of intestinal microbiota. When thiamine is added to the high-concentrate diet, the relative abundance of intestinal Firmicutes and beneficial bacteria represented by Lactobacilli were upregulated, and the relative abundance of Proteus, a marker of intestinal dysbacteriosis, returned to normal. In conclusion, thiamine supplementation could alleviate the damage to the intestinal tissue structure and microbial environment caused by SARA condition in dairy goats fed a high-concentrate diet.  相似文献   

14.
15.
In the current intensive production system, ruminants are often fed high-grain (HG) diets. However, this feeding pattern often causes rumen metabolic disorders and may further trigger laminitis, the exact mechanism is not clear. This study investigated the effect of HG diet feeding on fermentative and microbial changes in the rumen and on the expression of pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in the lamellar tissue. In all, 12 male goats were fed a hay diet (0% grain; n=6) or an HG diet (56.5% grain; n=6). On day 50 of treatment, samples of blood, rumen content, and lamellar tissue of hooves of goats were collected. The data showed that compared with the hay group, HG-fed goats had lower (P<0.05) rumen pH but higher (P<0.05) total volatile fatty acids and lactate in the rumen and higher (P<0.05) lipopolysaccharide (LPS) levels in the rumen and blood. HG diet feeding altered the composition of rumen bacterial community, and correspondingly, the results suggested that their functions in the HG group were also altered. HG diet feeding increased (P<0.05) the expression of interleukin-1β, interleukin-6, tumour necrosis factor-α and MMP-2 mRNA in the lamellar tissues compared with the hay group. Correlation analysis indicated that the expression of pro-inflammatory cytokines were positively correlated with MMP-2 expression in lamellar tissues. Overall, these results revealed that HG feeding altered the patterns of rumen fermentation and the composition and functions of rumen bacterial community, and lead to higher levels of LPS in the peripheral blood, and further activated the inflammatory response in lamellar tissues, which may progress to the level of laminar damage.  相似文献   

16.
Global warming is a challenge to animal health, because of increased heat stress, with subsequent induction of immunosuppression and increased susceptibility to disease. Toll-like receptors (TLR) are pattern recognition receptors that act as sentinels of pathogen invasion and tissue damage. Ligation of TLRs results in a signaling cascade and production of inflammatory cytokines, which eradicate pathogens and maintain the health of the host. We hypothesized that the TLR signaling pathway plays a role in immunosuppression in heat-stressed pigs. We explored the changes in the expression of TLR2, TLR4 and the concentration of acute inflammatory cytokines, such as IL-2, IL-8, IL-12 and IFN-γ in Bama miniature pigs subjected to 21 consecutive days of heat stress, both in vitro and in vivo models. The results showed that heat stress induced the upregulation of cortisol in the plasma of pigs (P<0.05); TLR4 mRNA was elevated, but IL-2 was reduced in peripheral blood mononuclear cells (PBMC, P<0.05). The white blood cell count and the percentage of granulocytes (eosinophilic+basophilic) decreased significantly in heat-stressed pigs (P<0.05). In the in vitro model (PBMC heat shocked for 1 h followed by a 9 h recovery period), TLR2 and TLR4 mRNA expression also increased, as did the concentration of IL-12 in supernatants. However, IFN-γ was significantly reduced in PBMC culture supernatants (P<0.05). We concluded that a consecutive heat stress period elevated the expression of TLR2 and TLR4 in PBMC and increased the plasma levels of inflammatory cytokines. These data indicate that TLR activation and dysregulation of cytokine expression in response to prolonged heat stress may be associated with immunosuppression and increased susceptibility to antigenic challenge in Bama miniature pigs.  相似文献   

17.
18.
19.
《Small Ruminant Research》2001,39(3):269-276
Four cannulated sheep were used to study ruminal fermentation of a diet consisting of 60% sugar cane tops (Saccharum officinarum), 30% corn stubble (Zea mays), 10% King grass (Pennisetum purpureum) and 0% (control), 10, 20 or 30% controlled-release urea supplement (CRUS) (diets 1, 2, 3 and 4, respectively). Average ruminal pH did not differ among diets (P>0.05), but during the first 6 h of sampling tended to be higher for CRUS diets. Ammonia concentrations were higher (P<0.01) in all treatments over controls, indicating microbial protein generation. Acetic acid production (mM/1) decreased (P<0.05), propionic acid increased (P<0.05), while butyric acid production did not differ among CRUS diets and controls (P>0.05). Total amounts of ruminal VFA were lowest (P<0.01) in controls, while CRUS diets produced more of these energy sources. Supplementation of the high fiber diets with 10, 20 or 30% CRUS increasingly improved rumen fermentation, ammonia supply and VFA production. The results show that low quality forages (up to 70% DMI) can be used efficiently by sheep when conditions for ruminal microorganism are improved with a controlled-release urea supplement.  相似文献   

20.
Replacement of conventional feedstuffs with cheap non-conventional ingredients may improve livestock performance and the quality of their products, particularly milk. The study considered the effects of Moringa oleifera (MO) foliage in replacement of berseem clover (BC) on feed utilisation and lactational performance in Nubian goats. A total of 16 lactating Nubian does, weighing 36.2±0.8 kg, were randomly assigned to four experimental treatments containing 0, 125, 250 and 375 g of MO per kg diet to replace 0 (M0), 25 (M25), 50 (M50) and 75% (M75) of BC (on dry matter (DM) basis) in a quadruplicated 4×4 Latin square design. The MO diets increased (P<0.01) feed intake and nutrient digestibility. Feeding MO diets improved (P<0.01) ruminal volatile fatty acids, acetate and propionate but reduced (P<0.01) valerate and iso-butyrate. Moringa diets increased (P<0.01) serum total protein, albumin and glucose but decreased (P<0.05) cholesterol and triglycerides. Milk yield and energy corrected milk, and milk total solids, fat and energy content were increased (P<0.01) in MO diets. Yields of milk components and energy were greater (P<0.05) for MO diets than for control diet. Milk total saturated fatty acids and athrogenicity index were lower (P<0.01), and unsaturated fatty acids, conjugated fatty acids and UFA/SFA ratio higher (P<0.05) for MO diets. It is concluded that feeding MO to replace 75% DM of BC improved feed utilisation, ruminal fermentation, and milk yield and quality in lactating Nubian goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号