首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

2.
Fluorescent in situ hybridization (FISH) is a technique routinely used by many laboratories to determine the chromosomal position of DNA and RNA probes. One important application of this method is the development of high-quality physical maps useful for improving the genome assemblies for various organisms. The natural banding pattern of polytene and mitotic chromosomes provides guidance for the precise ordering and orientation of the genomic supercontigs. Among the three mosquito genera, namely Anopheles, Aedes, and Culex, a well-established chromosome-based mapping technique has been developed only for Anopheles, whose members possess readable polytene chromosomes 1. As a result of genome mapping efforts, 88% of the An. gambiae genome has been placed to precise chromosome positions 2,3 . Two other mosquito genera, Aedes and Culex, have poorly polytenized chromosomes because of significant overrepresentation of transposable elements in their genomes 4, 5, 6. Only 31 and 9% of the genomic supercontings have been assigned without order or orientation to chromosomes of Ae. aegypti 7 and Cx. quinquefasciatus 8, respectively. Mitotic chromosome preparation for these two species had previously been limited to brain ganglia and cell lines. However, chromosome slides prepared from the brain ganglia of mosquitoes usually contain low numbers of metaphase plates 9. Also, although a FISH technique has been developed for mitotic chromosomes from a cell line of Ae. aegypti 10, the accumulation of multiple chromosomal rearrangements in cell line chromosomes 11 makes them useless for genome mapping. Here we describe a simple, robust technique for obtaining high-quality mitotic chromosome preparations from imaginal discs (IDs) of 4th instar larvae which can be used for all three genera of mosquitoes. A standard FISH protocol 12 is optimized for using BAC clones of genomic DNA as a probe on mitotic chromosomes of Ae. aegypti and Cx. quinquefasciatus, and for utilizing an intergenic spacer (IGS) region of ribosomal DNA (rDNA) as a probe on An. gambiae chromosomes. In addition to physical mapping, the developed technique can be applied to population cytogenetics and chromosome taxonomy/systematics of mosquitoes and other insect groups.  相似文献   

3.
 Six polyploid Aegilops species containing the D genome were studied by C-banding and fluorescence in situ hybridization (FISH) using clones pTa71 (18S-5.8S-26S rDNA), pTa794 (5S rDNA), and pAs1 (non-coding repetitive DNA sequence) as probes. The C-banding and pAs1-FISH patterns of Ae. cylindrica chromosomes were identical to those of the parental species. However, inactivation of the NOR on chromosome 5D with a simultaneous decrease in the size of the pTa71-FISH site was observed. The Nv and Dv genomes of Ae. ventricosa were somewhat modified as compared with the N genome of Ae. uniaristata and the D genome of Ae. tauschii. Modifications included minor changes in the C-banding and pAs1-FISH patterns, complete deletion of the NOR on chromosome 5Dv, and the loss of several minor 18S-5.8S-26S rDNA loci on Nv genome chromosomes. According to C-banding and FISH analyses, the Dcr1 genome of Ae. crassa is more similar to the Dv genome of Ae. ventricosa than to the D genome of Ae. tauschii. Mapping of the 18S-5.8S-26S rDNA and 5S rDNA loci by multicolor FISH suggests that the second (Xcr) genome of tetraploid Ae. crassa is a derivative of the S genome (section Emarginata of the Sitopsis group). Both genomes of Ae. crassa were significantly modified as the result of chromosomal rearrangements and redistribution of highly repetitive DNA sequences. Hexaploid Ae. crassa and Ae. vavilovii arose from the hybridization of chromosomal type N of tetraploid Ae. crassa with Ae. tauschii and Ae. searsii, respectively. Chromosomal type T1 of tetraploid Ae. crassa and Ae. umbellulata were the ancestral forms of Ae. juvenalis. The high level of genome modification in Ae. juvenalis indicates that it is the oldest hexaploid species in this group. The occurrence of hexaploid Ae. crassa was accompanied by a species-specific translocation between chromosomes 4Dcr1 and 7Xcr. No chromosome changes relative to the parental species were detected in Ae. vavilovii, however, its intraspecific diversity was accompanied by a translocation between chromosomes 3Xcr and 3Dcr1. Received July 24, 2001 Accepted October 1, 2001  相似文献   

4.

Background and Aims

Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement.

Methods

The chromosomal localization of (ACG)n and (GAA)n microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH.

Key Results

Single pericentromeric (ACG)n signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)n sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7Ub–7Mb reciprocal translocations and one had a 7Ub–1Mb rearrangement, while two Ae. geniculata accessions carried 7Ug–1Mg or 5Ug–5Mg translocations. Conspicuous (ACG)n and/or (GAA)n clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them.

Conclusions

Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)n and (GAA)n SSR motifs serve as additional chromosome markers for the karyotypic analysis of UM genome Aegilops species.  相似文献   

5.

Background and Aims

The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification.

Methods

A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100–500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling.

Key Results

Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S–5·8S–25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species.

Conclusions

The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.  相似文献   

6.
RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03–0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007–0.067 in Ae. cylindrica, 0.017–0.047 in Ae. vavilovii, and 0–0.053 inAe. juvenalis.Likewise, Ae. ventricosaand Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploidAe. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica(CcDc) was considerably lower than in either parent, Ae. tauschii (D) orAe. caudata (C). With the exception of Ae. cylindrica, all D-genome species—Ae. tauschii (D),Ae. ventricosa (DvNv), Ae. crassa (XcrDcr1 and XcrDcr1Dcr2), Ae. juvenalis (XjDjUj), andAe. vavilovii (XvaDvaSva)—formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica(CcDc), did not group with the other D-genome species, but clustered withAe. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species.  相似文献   

7.
Genomes of opisthorchid species are characterized by small size, suggesting a reduced amount of repetitive DNA in their genomes. Distribution of repetitive DNA sequences in the chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus 2n = 14 (Rivolta, 1884), Opisthorchis viverrini 2n = 12 (Poirier, 1886), Metorchis xanthosomus 2n = 14 (Creplin, 1846), Metorchis bilis 2n = 14 (Braun, 1890), Clonorchis sinensis 2n = 14 (Cobbold, 1875)) was studied with C- and AgNOR-banding, generation of microdissected DNA probes from individual chromosomes and fluorescent in situ hybridization on mitotic and meiotic chromosomes. Small-sized C-bands were discovered in pericentric regions of chromosomes. Ag-NOR staining of opisthorchid chromosomes and FISH with ribosomal DNA probe showed that karyotypes of all studied species were characterized by the only nucleolus organizer region in one of small chromosomes. The generation of DNA probes from chromosomes 1 and 2 of O. felineus and M. xanthosomus was performed with chromosome microdissection followed by DOP-PCR. FISH of obtained microdissected DNA probes on chromosomes of these species revealed chromosome specific DNA repeats in pericentric C-bands. It was also shown that microdissected DNA probes generated from chromosomes could be used as the Whole Chromosome Painting Probes without suppression of repetitive DNA hybridization. Chromosome painting using microdissected chromosome specific DNA probes showed the overall repeat distribution in opisthorchid chromosomes.  相似文献   

8.
In the present study karyotypes and chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus (Rivolta, 1884), O. viverrini (Poirier, 1886), Metorchis xanthosomus (Creplin, 1846), M. bilis (Braun, 1893), and Clonorchis sinensis (Cobbold, 1875)) were compared. Karyotypes of O. felineus, M. xanthosomus, M. bilis and C. sinensis consist of two pairs of large meta- and submetacentrics and five pairs of small chromosomes (2n = 14). The karyotype of O. viverrini is 2n = 12, which indicates a fusion of two chromosomes of opisthorchid ancestral karyotype. Analysis of mitotic and meiotic chromosomes was performed by heterologous in situ hybridization of microdissected DNA probes obtained from chromosomes 1 and 2 of O. felineus and chromosomes 1 and 2 of M. xanthosomus. Results of chromosome staining (C- and AgNOR-banding) and FISH of telomeric probes and ribosomal DNA probe on opisthorchid chromosomes were used for chromosome comparison. Data on chromosome number in opisthorchid species were also discussed.  相似文献   

9.
A Yoshido  K Sahara  F Marec  Y Matsuda 《Heredity》2011,106(4):614-624
Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A1) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A2) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A1 homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ1Z2). One homologue, corresponding to the A2 autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z2 chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome–sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation.  相似文献   

10.
Phylogenetic relationships of polyploid Aegilops species sharing the U-genome were investigated by analyzing heterochromatin banding patterns of their somatic metaphase chromosomes as revealed by C-banding and fluorescence in situ hybridization (FISH) with the heterochromatin-limited repetitive DNA probes pSc119, pAs1, as well as the distribution of NOR and 5S DNA loci revealed by pTa71 (18S-26S rDNA), and pTa794 (5S rDNA) probes. Seven tetraploid (Ae. triuncialis, Ae. peregrina, Ae. kotschyi, Ae. geniculata, Ae. biuncialis, Ae. columnaris, and 4x Ae. neglecta) and one hexaploid (6x Ae. neglecta) Aegilops species of the U-genome cluster were studied. The Ut and Ct chromosomes of 4x Ae. triuncialis (UtCt) were similar to the diploid donors Ae. umbellulata (U) and Ae. caudata (C). However, the size of the NOR locus on chromosome 5Ut was reduced. Karyotypic analyses confirmed that 4x Ae. peregrina (SpUp) was derived from a hybridization of the diploid species Ae. umbellulata with Ae. longissima, whereas Ae. umbellulata and Ae. sharonensis (or an immediate precursor) were the diploid progenitor species of Ae. kotschyi (SkUk). In both 4x species, the NORs on S-genome chromosomes were inactivated and were accompanied with a decrease or loss of rDNA sequences. Karyotypes of the tetraploid species, Ae. geniculata (UgMg) and Ae. biuncialis (UbMb) differed from each other and from the putative diploid progenitors Ae. umbellulata and Ae. comosa indicating that various types of chromosomal alterations occurred during speciation. Inactivation of major NORs on the M-genome chromosomes, redistribution of 5S rDNA sites, and loss of some minor 18S-26S rDNA loci were observed in Ae. geniculata and Ae. biuncialis. Significant differences in the total amount and distribution of heterochromatin, the number and location of 5S and 18S-26S rDNA loci observed between Ae. columnaris (UcXc)/4x Ae. neglecta (UnXn) and Ae. geniculata/Ae. biuncialis indicate that these species have different origins. Similarities in C-banding and FISH patterns of most Ae. columnaris and 4x Ae. neglecta chromosomes suggest that they were probably derived from a common ancestor, whereas distinct differences of three chromosome pairs may indicate that the divergence of these species was probably associated with chromosomal rearrangements and/or introgressive hybridization. Ae. umbellulata contributed the U genome, however, the source of their second genomes remains unknown. The formation of 6x Ae. neglecta (UnXnNn) was not associated with large modifications of the parental genomes.  相似文献   

11.
Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat–Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization.  相似文献   

12.
This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.  相似文献   

13.
 The present study analyzed the distribution pattern of the Ae. speltoides–derived repetitive clone pGc1R-1 in the Triticum/Aegilops complex. Fluorescence in situ hybridization analysis showed that clone pGc1R-1 is a S-genome-specific repetitive sequence that hybridized to the S-genome of three species in the section Sitopsis, Aegilops speltoides (S), Ae. longissima (Sl), and Ae. sharonensis (Ssh), but not to Ae. bicornis (Sb) and Ae. searsii (Ss), nor to any other diploid Aegilops species. This clone also hybridized to the very closely related G-genome of T. timopheevii subsp. armeniacum and T. timopheevii ssp. timopheevii, but not to the B-genome of T. turgidum and T. aestivum. Hybridization also was observed in the polyploid Aegilops species, Ae. kotschyi (UkSk), Ae. peregrina (UpSp), and Ae. vavilovii (XvaDvaSva). Large inter- and intraspecific variations were observed. Our results confirm that the S genome is related more to the Sl and Ssh genomes than to the Sb and Ss genomes; there is a greater affinity between the G and S genomes than between the B and S genomes. Mechanisms to account for the variation in the FISH pattern with different genomes include sequence amplification and deletion. Variation in the distribution of this genome-specific DNA sequence, pGc1R-1, on chromosomes can be used to reveal evolutionary relationships in the Triticum and Aegilops complex. Received April 10, 2002; accepted July 12, 2002 Published online: November 28, 2002 Address of the authors: Peng Zhang, Bernd Friebe (e-mail: friebe@ksu.edu), Bikram S. Gill, Wheat Genetics Resource Center, Department of Plant Pathology, 4024 Throckmorton, Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA.  相似文献   

14.
After two selfing generations of two different Triticum turgidum Aegilops ovata amphiploids carrying the Ph1 gene, or lacking it (ph1c mutant), karyotypes of their offspring were scored by GISH (genomic in situ hybridization). On average, the chromosome number was lower than expected (56 chromosomes) on the basis of the parental constitutions (T. turgidum, AABB, 2n=4x=28; Ae. ovata, MoMoUoUo, 2n=4x=28). The lost chromosomes belonged to the wild Aegilops species. The two families differed greatly by their number of intergenomic translocations, also detected by GISH. The ph1c family showed nine translocations over 12 plants while only one translocation was observed in the Ph1 family. All exchanges involved either the Mo and Uo chromosomes or the Mo and wheat chromosomes, the size of the exchanged segment ranging from 3% to 36% of the total chromosome length. The results suggest an epistatic effect of the ph1c deletion over the genetic diploidizing system that operates in Ae. ovata since translocated chromosomes are most-likely derived from homoeologous recombination. The potential of these results for wheat breeding programmes is also considered. Received: 28 November 2000 / Accepted: 20 March 2001  相似文献   

15.
Summary The seed proteins of Chinese Spring wheat stocks which possess single chromosomes from other plant species related to wheat have been separated by gel electrophoresis in the presence of sodium dodecyl sulphate. Marker protein bands have been detected for both arms of barley chromosome 5, chromosome E (= 1R) and B (= 2R) of rye, chromosomes A,B (= 1Cu) and C (= 5Cu) of Aegilops umbellulata and chromosomes I and III of Agropyron elongatum. These studies, and previous findings, indicate that chromosome 5 of barley, chromosome 1R of rye, chromosome I of Ag. elongatum and possibly chromosome 1Cu of Ae. umbellulata are similar to chromosomes 1A, 1B and 1D in hexaploid wheat in that they carry genes controlling prolamins on their short arms and genes controlling high-molecular-weight (apparent molecular weight greater than 86,000) seed protein species on their long arms. These findings support the idea that all these chromosomes are derived from a common ancestral chromosome and that they have maintained their integrity since their derivation from that ancestral chromosome.  相似文献   

16.
Aegilops longissima Schw. et Musch. (2n= 2x=14, SlSl) and Aegilops sharonensis Eig. (2n=2x=14, SlSl) are diploid species belonging to the section Sitopsis in the tribe Triticeae and potential donors of useful genes for wheat breeding. A comparative genetic map was constructed of the Ae. longissima genome, using RFLP probes with known location in wheat. A high degree of conserved colinearity was observed between the wild diploid and basic wheat genome, represented by the D genome of cultivated wheat. Chromosomes 1Sl, 2Sl, 3Sl, 5Sl and 6Sl are colinear with wheat chromosomes 1D, 2D, 3D, 5D and 6D, respectively. The analysis confirmed that chromosomes 4Sl and 7Sl are translocated relative to wheat. The short arms and major part of the long arms are homoeologous to most of wheat chromosomes 4D and 7D respectively, but the region corresponding to the distal segment of 7D was translocated from 7SlL to the distal region of 4SlL. The map and RFLP markers were then used to analyse the genomes and added chromosomes in a set of ’Chinese Spring’ (CS)/Ae. longissima chromosome additions. The study confirmed the availability of disomic CS/Ae. longissima addition lines for chromosomes 1Sl, 2Sl, 3Sl, 4Sl and 5Sl. An as yet unpublished set of Ae. sharonensis chromosome addition lines were also available for analysis. Due to the gametocidal nature of Ae. sharonensis chromosomes 2Sl and 4Sl, additions 1Sl, 3Sl, 5Sl, 6Sl and 7Sl were produced in a (4D)4Sl background, and 2Sl and 4Sl in a euploid wheat background. The analysis also confirmed that the 4/7 translocation found in Ae. longissima was not present in Ae. sharonensis although the two wild relatives of wheat are considered to be closely related. The phenotypes of the Ae. sharonensis addition lines are described in an Appendix. Received: 28 September 2000 / Accepted: 19 January 2001  相似文献   

17.
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.  相似文献   

18.

Background and Aims

Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera.

Methods

In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH).

Key Results

Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species.

Conclusions

The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species.  相似文献   

19.

Background and Aims

Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes.

Methods

A new batch of B. rapa–B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow''s carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used.

Key Results

The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups.

Conclusions

A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.  相似文献   

20.
Preparation of chromosome spreads is a prerequisite for the successful performance of fluorescence in situ hybridization (FISH). Preparation of high quality plant chromosome spreads is challenging due to the rigid cell wall. One of the approved methods for the preparation of plant chromosomes is a so-called drop preparation, also known as drop-spreading or air-drying technique. Here, we present a protocol for the fast preparation of mitotic chromosome spreads suitable for the FISH detection of single and high copy DNA probes. This method is an improved variant of the air-dry drop method performed under a relative humidity of 50%-55%. This protocol comprises a reduced number of washing steps making its application easy, efficient and reproducible. Obvious benefits of this approach are well-spread, undamaged and numerous metaphase chromosomes serving as a perfect prerequisite for successful FISH analysis. Using this protocol we obtained high-quality chromosome spreads and reproducible FISH results for Hordeum vulgare, H. bulbosum, H. marinum, H. murinum, H. pubiflorum and Secale cereale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号