首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. The human isoform 2 of FADS (hFADS2), which is the product of FLAD1 gene, was over-expressed in Escherichia coli as a T7-tagged protein and identified by MALDI-TOF MS analysis. Its molecular mass, calculated by SDS-PAGE, was approx. 55 kDa. The expressed protein accounted for more than 40% of the total protein extracted from the cell culture; 10% of it was recovered in a soluble and nearly pure form by Triton X-100 treatment of the insoluble cell fraction. hFADS2 possesses FADS activity and has a strict requirement for MgCl2, as demonstrated in a spectrophotometric assay. The purified recombinant isoform 2 showed a kcat of 3.6 x 10(-3)s(-1) and exhibited a KM value for FMN of about 0.4 microM. The expression of the hFADS2 isoform opens new perspectives in the structural studies of this enzyme and in the design of antibiotics based on the functional differences between the bacterial and the human enzymes.  相似文献   

2.
Chartron J  Shiau C  Stout CD  Carroll KS 《Biochemistry》2007,46(13):3942-3951
The crystal structure of Escherichia coli 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase in complex with E. coli thioredoxin 1 (Trx1) has been determined to 3.0 A resolution. The two proteins are covalently linked via a mixed disulfide that forms during nucleophilic attack of Trx's N-terminal cysteine on the Sgamma atom of the PAPS reductase S-sulfocysteine (E-Cys-Sgamma-SO3-), a central intermediate in the catalytic cycle. For the first time in a crystal structure, residues 235-244 in the PAPS reductase C-terminus are observed, depicting an array of interprotein salt bridges between Trx and the strictly conserved glutathione-like sequence, Glu238Cys239Gly240Leu241His242. The structure also reveals a Trx-binding surface adjacent to the active site cleft and regions of PAPS reductase associated with conformational change. Interaction at this site strategically positions Trx to bind the S-sulfated C-terminus and addresses the mechanism for requisite structural rearrangement of this domain. An apparent sulfite-binding pocket at the protein-protein interface explicitly orients the S-sulfocysteine Sgamma atom for nucleophilic attack in a subsequent step. Taken together, the structure of PAPS reductase in complex with Trx highlights the large structural rearrangement required to accomplish sulfonucleotide reduction and suggests a role for Trx in catalysis beyond the paradigm of disulfide reduction.  相似文献   

3.
Mammalian thioredoxin reductase [EC 1.6.4.5], a homodimeric flavoprotein, has a marked similarity to glutathione reductase. The two cysteines in the N-terminal FAD domain (-Cys59-x-x-x-x-Cys64-) and histidine (His472) are conserved between them at corresponding positions, but the mammalian thioredoxin reductase contains a C-terminal extension of selenocysteine (Sec or U) at the penultimate position and a preceding cysteine (-Gly-Cys497-Sec498-Gly). Introduction of mutations into the cloned rat thioredoxin reductase gene revealed that residues Cys59, Cys64, His472, Cys497, and Sec498, as well as the sequence of Cys497 and Sec498 were essential for thioredoxin-reducing activity. To analyze the catalytic mechanism of the mammalian thioredoxin reductase, the wild-type, U498C, U498S, C59S, and C64S were overproduced in a baculovirus/insect cell system and purified. The wild-type thioredoxin reductase produced in this system, designated as WT, was found to lack the Sec residue and to terminate at Cys497. A Sec-containing thioredoxin reductase, which was purified from COS-1 cells transfected with the wild-type cDNA, was designated as SecWT and was used as an authentic enzyme. Among mutant enzymes, only U498C retained a slight thioredoxin-reducing activity at about three orders magnitude lower than SecWT. WT, U498C, and U498S showed some 5,5'-dithiobis(2-nitrobenzoic acid)-reducing activity and transhydrogenase activity, and C59S and C64S had substantially no such activities. These data and spectral analyses of these enzymes suggest that Cys59 and Cys64 at the N-terminus, in conjunction with His472, function as primary acceptors for electrons from NADPH via FAD, and that the electrons are then transferred to Cys497-Sec498 at the C-terminus for the reduction of oxidized thioredoxin in the mammalian thioredoxin reductase.  相似文献   

4.
M J Moore  S M Miller  C T Walsh 《Biochemistry》1992,31(6):1677-1685
Mercuric ion reductase (MerA) catalyzes the reduction of Hg(II) to Hg(0) as the last step in the bacterial mercury detoxification pathway. A member of the flavin disulfide oxidoreductase family, MerA contains an FAD prosthetic group and redox-active disulfide in its active site. However, the presence of these two moieties is not sufficient for catalytic Hg(II) reduction, as other enzyme family members are potently inhibited by mercurials. We have previously identified a second pair of active site cysteines (Cys558 Cys559 in the Tn501 enzyme) unique to MerA, that are essential for high levels of mercuric ion reductase activity [Moore, M. J., & Walsh, C. T. (1989) Biochemistry 28, 1183; Miller, S. M., et al. (1989) Biochemistry 28, 1194]. In this paper, we have examined the individual roles of Cys558 and Cys559 by site-directed mutagenesis of each to alanine. Phenotypic analysis indicates that both merA mutations result in a total disruption of the Hg(II) detoxification pathway in vivo, while characterization of the purified mutant enzymes in vitro shows each to have differential effects on catalytic function. Compared to wild-type enzyme, the C558A mutant shows a 20-fold reduction in kcat and a 10-fold increase in Km, for an overall decrease in catalytic efficiency of 200-fold in kcat/Km. In contrast, mutation of Cys559 to alanine results in less than a 2-fold reduction in kcat and an increase in Km of only 4-5 fold for an overall decrease in catalytic efficiency of only ca. 10-fold in vitro. From these results, it appears that Cys558 plays a more important role in forming the reducible complex with Hg(II), while both Cys558 and Cys559 seem to be involved in efficient scavenging (i.e., tight binding) of Hg(II).  相似文献   

5.
Bovine core 2 beta1,6-N-acetylglucosaminyltransferase-M (bC2GnT-M) catalyzes the formation of all mucin beta1,6-N-acetylglucosaminides, including core 2, core 4, and blood group I structures. These structures expand the complexity of mucin carbohydrate structure and thus the functional potential of mucins. The four known mucin beta1,6-N-acetylglucosaminyltransferases contain nine conserved cysteines. We determined the disulfide bond assignments of these cysteines in [(35)S]cysteine-labeled bC2GnT-M isolated from the serum-free conditioned medium of Chinese hamster ovary cells stably transfected with a pSecTag plasmid. This plasmid contains bC2GnT-M cDNA devoid of the 5'-sequence coding the cytoplasmic tail and transmembrane domain. The C18 reversed phase high performance liquid chromatographic profile of the tryptic peptides of reduced-alkylated (35)S-labeled C2GnT-M was established using microsequencing. Each cystine pair was identified by rechromatography of the C8 high performance liquid chromatographic radiolabeled tryptic peptides of alkylated bC2GnT-M on C18 column. Among the conserved cysteines in bC2GnT-M, the second (Cys(113)) was a free thiol, whereas the other eight cysteines formed four disulfide bridges, which included the first (Cys(73)) and sixth (Cys(230)), third (Cys(164)) and seventh (Cys(384)), fourth (Cys(185)) and fifth (Cys(212)), and eighth (Cys(393)) and ninth (Cys(425)) cysteine residues. This pattern of disulfide bond formation differs from that of mouse C2GnT-L, which may contribute to the difference in substrate specificity between these two enzymes. Molecular modeling using disulfide bond assignments and the fold recognition/threading method to search the Protein Data Bank found a match with aspartate aminotransferase structure. This structure is different from the two major protein folds proposed for glycosyltransferases.  相似文献   

6.
Aldose reductase (ALR2) is susceptible to oxidative inactivation by copper ion. The mechanism underlying the reversible modification of ALR2 was studied by mass spectrometry, circular dichroism, and molecular modeling approaches on the enzyme purified from bovine lens and on wild type and mutant recombinant forms of the human placental and rat lens ALR2. Two equivalents of copper ion were required to inactivate ALR2: one remained weakly bound to the oxidized protein whereas the other was strongly retained by the inactive enzyme. Cys(303) appeared to be the essential residue for enzyme inactivation, because the human C303S mutant was the only enzyme form tested that was not inactivated by copper treatment. The final products of human and bovine ALR2 oxidation contained the intramolecular disulfide bond Cys(298)-Cys(303). However, a Cys(80)-Cys(303) disulfide could also be formed. Evidence for an intramolecular rearrangement of the Cys(80)-Cys(303) disulfide to the more stable product Cys(298)-Cys(303) is provided. Molecular modeling of the holoenzyme supports the observed copper sequestration as well as the generation of the Cys(80)-Cys(303) disulfide. However, no evidence of conditions favoring the formation of the Cys(298)-Cys(303) disulfide was observed. Our proposal is that the generation of the Cys(298)-Cys(303) disulfide, either directly or by rearrangement of the Cys(80)-Cys(303) disulfide, may be induced by the release of the cofactor from ALR2 undergoing oxidation. The occurrence of a less interactive site for the cofactor would also provide the rationale for the lack of activity of the disulfide enzyme forms.  相似文献   

7.
M D Distefano  K G Au  C T Walsh 《Biochemistry》1989,28(3):1168-1183
Mercuric reductase, a flavoenzyme that possess a redox-active cystine, Cys135Cys140, catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, we have constructed mutants lacking a redox-active disulfide by eliminating Cys135 (Ala135Cys140), Cys140 (Cys135Ala140), or both (Ala135Ala140). Additionally, we have made double mutants that lack Cys135 (Ala135Cys139Cys140) or Cys140 (Cys135Cys139Ala140) but introduce a new Cys in place of Gly139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. These differences are manifested in a 23-nm range in enzyme-bound FAD lambda max values, an 80-nm range in thiolate to flavin charge-transfer absorbance maxima, and a ca. 100-mV range in FAD reduction potential. Preliminary evidence for the Ala135Cys139Cys140 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala135Cys140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. For these activities, there is a linear correlation between log kappa cat and enzyme-bound FAD reduction potential. In a sensitive Hg(II)-mediated enzyme-bound FADH2 reoxidation assay, all mutant enzymes were able to undergo at least one catalytic event at rates 50-1000-fold slower than that of the wild-type enzyme. We have also observed the reduction of Hg(II) by free FADH2. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. We conclude that the Cys135 and Cys140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate.  相似文献   

8.
A mutant form of mercuric reductase, which has three of its four catalytically essential cysteine residues replaced by alanines (ACAA: Ala135Cys140Ala558Ala559), has been constructed and used for mechanistic investigations. With disruption of the Hg(II) binding site, the mutant enzyme is devoid of Hg(II) reductase activity. However, it appears to fold properly since it binds FAD normally and exhibits very tight binding of pyridine nucleotides as is seen with the wild-type enzyme. This mutant enzyme allows quantitative accumulation of two species thought to function as intermediates in the catalytic sequence of the flavoprotein disulfide reductase family of enzymes. NADPH reduces the flavin in this mutant, and a stabilized E-FADH- form accumulates. The second intermediate is a flavin C(4a)-Cys140 thiol adduct, which is quantitatively accumulated by reaction of oxidized ACAA enzyme with NADP+. The conversion of the Cys135-Cys140 disulfide in wild-type enzyme to the monothiol Cys140 in ACAA and the elevated pKa of Cys140 (6.7 vs 5.0 in wild type) have permitted detection of these intermediates at low pH (5.0). The rates of formation of E-FADH- and the breakdown of the flavin C(4a)-thiol adduct have been measured and indicate that both intermediates are kinetically competent for both the reductive half-reaction and turnover by wild-type enzyme. These results validate the general proposal that electrons flow from NADPH to FADH- to C(4a)-thiol adduct to the FAD/dithiol form that accumulates as the EH2 form in the reductive half-reaction for this class of enzymes.  相似文献   

9.
Mercuric reductase, with FAD and a reducible disulfide at the active site, catalyzes the two-electron reduction of Hg(II) by NADPH. Addition of reducing equivalents rapidly produces a spectrally distinct EH2 form of the enzyme containing oxidized FAD and reduced active site thiols. Formation of EH2 has previously been reported to require only 2 electrons for reduction of the active site disulfide. We present results of anaerobic titrations of mercuric reductase with NADPH and dithionite showing that the equilibrium conversion of oxidized enzyme to EH2 actually requires 2 equiv of reducing agent or 4 electrons. Kinetic studies conducted both at 4 degrees C and at 25 degrees C indicate that reduction of the active site occurs rapidly, as previously reported [Sahlman, L., & Lindskog, S. (1983) Biochem. Biophys. Res. Commun. 117, 231-237]; this is followed by a slower reduction of another redox group via reaction with the active site. Thiol titrations of denatured Eox and EH2 enzyme forms show that an additional disulfide is the group in communication with the active site. [14C]Iodoacetamide labeling experiments demonstrate that the C-terminal residues, Cys558 and Cys559, are involved in this disulfide. The fluorescence, but not the absorbance, of the enzyme-bound FAD was found to be highly dependent on the redox state of the C-terminal thiols. Thus, Eox with Cys558 and Cys559 as thiols exhibits less than 50% of the fluorescence of Eox where these residues are present as a disulfide, indicating that the thiols remain intimately associated with the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII(mtl)) has been identified by the generation of disulfide bridges in a single-cysteine EII(mtl), with only the activity linked Cys(384) in the B domain, and in a double-cysteine EII(mtl) with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)(3), and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII(mtl) was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys(384)-Cys(384), an intersubunit Cys(124)-Cys(124), an intersubunit Cys(384)-Cys(124), and an intrasubunit Cys(384)-Cys(124). The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys(384) and Cys(124). The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)(3) or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.  相似文献   

11.
Reynolds CM  Poole LB 《Biochemistry》2000,39(30):8859-8869
AhpF of Salmonella typhimurium, the flavoprotein reductase required for catalytic turnover of AhpC with hydroperoxide substrates in the alkyl hydroperoxide reductase system, is a 57 kDa protein with homology to thioredoxin reductase (TrR) from Escherichia coli. Like TrR, AhpF employs tightly bound FAD and redox-active disulfide center(s) in catalyzing electron transfer from reduced pyridine nucleotides to the disulfide bond of its protein substrate. Homology of AhpF to the smaller (35 kDa) TrR protein occurs in the C-terminal part of AhpF; a stretch of about 200 amino acids at the N-terminus of AhpF contains an additional redox-active disulfide center and is required for catalysis of AhpC reduction. We have demonstrated that fusion of the N-terminal 207 amino acids of AhpF to full-length TrR results in a chimeric protein (Nt-TrR) with essentially the same catalytic efficiency (k(cat)/K(m)) as AhpF in AhpC reductase assays; both k(cat) and the K(m) for AhpC are decreased about 3-4-fold for Nt-TrR compared with AhpF. In addition, Nt-TrR retains essentially full TrR activity. Based on results from two mutants of Nt-TrR (C129, 132S and C342,345S), AhpC reductase activity requires both centers while TrR activity requires only the C-terminal-most disulfide center in Nt-TrR. The high catalytic efficiency with which Nt-TrR can reduce thioredoxin implies that the attached N-terminal domain does not block access of thioredoxin to the TrR-derived Cys342-Cys345 center of Nt-TrR nor does it impede the putative conformational changes that this part of Nt-TrR is proposed to undergo during catalysis. These studies indicate that the C-terminal part of AhpF and bacterial TrR have very similar mechanistic properties. These findings also confirm that the N-terminal domain of AhpF plays a direct role in AhpC reduction.  相似文献   

12.
The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (E(m)) value of -165mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, E(m) value of -220mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8? resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.  相似文献   

13.
The extracellular N-terminal domain of the human Ca(2+) receptor (hCaR) consists of a Venus's-flytrap (VFT) domain and a cysteine-rich (Cys-rich) domain. We have shown earlier that the Cys-rich domain is critical for signal transmission from the VFT domain to the seven-transmembrane domain. The VFT domain contains 10 cysteines: two of them (Cys(129) and Cys(131)) were identified as involved in intermolecular disulfide bonds necessary for homodimerization, and six others (Cys(60)-Cys(101), Cys(358)-Cys(395), and Cys(437)-Cys(449)) are predicted to form three intramolecular disulfide bonds. The Cys-rich domain contains nine cysteines, the involvement of which in disulfide bond formation has not been defined. In this work, we asked whether the remaining cysteines in the hCaR VFT, namely Cys(236) and Cys(482), form disulfide bond(s) with cysteines in the Cys-rich domain. We constructed mutant hCaRs with a unique tobacco etch virus (TEV) protease recognition site inserted between the VFT domain and the Cys-rich domain. These mutant hCaRs remain fully functional compared with the wild type hCaR. After TEV protease digestion of the mutant hCaR proteins, dimers of the VFT were identified on Western blot under nonreducing conditions. We concluded that there is no disulfide bond between the VFT and the Cys-rich domains in the hCaR.  相似文献   

14.
Methionine residues in proteins are susceptible to oxidation, and the resulting methionine sulfoxides can be reduced back to methionines by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). Herein, we have identified two MsrB families that differ by the presence of zinc. Evolutionary analyses suggested that the zinc-containing MsrB proteins are prototype enzymes and that the metal was lost in certain MsrB proteins later in evolution. Zinc-containing Drosophila MsrB was further characterized. The enzyme was found to employ a catalytic Cys(124) thiolate, which directly interacted with methionine sulfoxide, resulting in methionine and a Cys(124) sulfenic acid intermediate. A subsequent reaction of this intermediate with Cys(69) generated an intramolecular disulfide. Dithiothreitol could reduce either the sulfenic acid or the disulfide, but the disulfide was a preferred substrate for thioredoxin, a natural electron donor. Interestingly, the C69S mutant could complement MsrA/MsrB deficiency in yeast, and the corresponding natural form of mouse MsrB was active with thioredoxin. These data indicate that MsrB proteins employ alternative mechanisms for sulfenic acid reduction. Four other conserved cysteines in Drosophila MsrB (Cys(51), Cys(54), Cys(101), and Cys(104)) were found to coordinate structural zinc. Mutation of any one or a combination of these residues resulted in complete loss of metal and catalytic activity, demonstrating an essential role of zinc in Drosophila MsrB. In contrast, two conserved histidines were important for thioredoxin-dependent activity, but were not involved in zinc binding. A Drosophila MsrA gene was also cloned, and the recombinant enzyme was found to be metal-free and specific for methionine S-sulfoxide and to employ a similar sulfenic acid/disulfide mechanism.  相似文献   

15.
Among alpha 3-fucosyltransferases (alpha3-FucTs) from most species, four cysteine residues appear to be highly conserved. Two of these cysteines are located at the N-terminus and two at the C-terminus of the catalytic domain. FucT VII possesses two additional cysteines in close proximity to each other located in the middle of the catalytic domain. We identified the disulfide bridges in a recombinant, soluble form of human FucT VII. Potential free cysteines were modified with a biotinylated alkylating reagent, disulfide bonds were reduced and alkylated with iodoacetamide, and the protein was digested with either trypsin or chymotrypsin, before characterization by high-performance liquid chromatography/electrospray ionization mass spectrometry. More than 98% of the amino acid sequence for the truncated enzyme (beginning at amino acid 53) was verified. Mass spectrometry analysis also demonstrated that both potential N-linked sites are occupied. All six cysteines in the FucT VII sequence were shown to be disulfide-linked. The pairing of the cysteines was determined by proteolytic cleavage of nonreduced protein and subsequent analysis by mass spectrometry. The results demonstrated that Cys(68)-Cys(76), Cys(211)-Cys(214), and Cys(318)-Cys(321) are disulfide-linked. We have used this information, together with a method of fold recognition and homology modeling, using the (alpha/beta)(8)-barrel fold of Escherichia coli dihydrodipicolinate synthase as a template to propose a model for FucT VII.  相似文献   

16.
M J Moore  C T Walsh 《Biochemistry》1989,28(3):1183-1194
Mercuric ion reductase (the merA gene product) is a unique member of the class of FAD and redox-active disulfide-containing oxidoreductases by virtue of its ability to reduce Hg(II) to Hg(0) as the last step in bacterial detoxification of mercurials. In addition to the active site redox-active disulfide, formed between Cys135 and Cys140 in Tn501 MerA, the protein products of the three merA gene sequences published to date have two additional conserved pairs of cysteines, one near the N-terminus (Cys10Cys13 in Tn501 MerA) and another near the C-terminus (Cys558Cys559 in Tn501 MerA). Neither of these pairs is found in other members of this enzyme family. To assess the possible roles of these peripheral cysteines in the Hg(II) detoxification pathway, we have constructed and characterized one single mutant, Cys10Ala13, and two double mutants, Ala10Ala13 and Ala558Ala559. The N-terminal mutants are fully functional in vivo as determined by HgCl2 resistance studies, showing the N-terminal cysteine pair to be dispensable. In contrast, the Ala558Ala559 mutant is defective for HgCl2 resistance in vivo and Hg(SR)2 reduction in vitro, thereby implicating Cys558 and/or Cys559 in Hg(II) reduction by the wild-type enzyme. Other activities, such as NADPH/thio-NADP+ transhydrogenation, NADPH oxidation, and DTNB reduction, are unimpaired in this mutant.  相似文献   

17.
gp130 is the common signal transducing receptor subunit for the interleukin-6-type family of cytokines. Its extracellular region (sgp130) is predicted to consist of five fibronectin type III-like domains and an NH2-terminal Ig-like domain. Domains 2 and 3 constitute the cytokine-binding region defined by a set of four conserved cysteines and a WSXWS motif, respectively. Here we determine the disulfide structure of human sgp130 by peptide mapping, in the absence and presence of reducing agent, in combination with Edman degradation and mass spectrometry. Of the 13 cysteines present, 10 form disulfide bonds, two are present as free cysteines (Cys(279) and Cys(469)), and one (Cys(397)) is modified by S-cysteinylation. Of the 11 potential N-glycosylation sites, Asn(21), Asn(61), Asn(109), Asn(135), Asn(205), Asn(357), Asn(361), Asn(531), and Asn(542) are glycosylated but not Asn(224) and Asn(368). The disulfide bonds, Cys(112)-Cys(122) and Cys(150)-Cys(160), are consistent with known cytokine-binding region motifs. Unlike granulocyte colony-stimulating factor receptor, the connectivities of the four cysteines in the NH2-terminal domain of gp130 (Cys(6)-Cys(32) and Cys(26)-Cys(81)) are consistent with known superfamily of Ig-like domains. An eight-residue loop in domain 5 is tethered by Cys(436)-Cys(444). We have created a model predicting that this loop maintains Cys(469) in a reduced form, available for ligand-induced intramolecular disulfide bond formation. Furthermore, we postulate that domain 5 may play a role in the disulfide-linked homodimerization and activation process of gp130.  相似文献   

18.
Yu Z  Lemongello D  Segel IH  Fisher AJ 《Biochemistry》2008,47(48):12777-12786
Most assimilatory bacteria, fungi, and plants species reduce sulfate (in the activated form of APS or PAPS) to produce reduced sulfur. In yeast, PAPS reductase reduces PAPS to sulfite and PAP. Despite the difference in substrate specificity and catalytic cofactor, PAPS reductase is homologous to APS reductase in both sequence and structure, and they are suggested to share the same catalytic mechanism. Metazoans do not possess the sulfate reduction pathway, which makes APS/PAPS reductases potential drug targets for human pathogens. Here, we present the 2.05 A resolution crystal structure of the yeast PAPS reductase binary complex with product PAP bound. The N-terminal region mediates dimeric interactions resulting in a unique homodimer assembly not seen in previous APS/PAPS reductase structures. The "pyrophosphate-binding" sequence (47)TTAFGLTG(54) defines the substrate 3'-phosphate binding pocket. In yeast, Gly54 replaces a conserved aspartate found in APS reductases vacating space and charge to accommodate the 3'-phosphate of PAPS, thus regulating substrate specificity. Also, for the first time, the complete C-terminal catalytic motif (244)ECGIH(248) is revealed in the active site. The catalytic residue Cys245 is ideally positioned for an in-line attack on the beta-sulfate of PAPS. In addition, the side chain of His248 is only 4.2 A from the Sgamma of Cys245 and may serve as a catalytic base to deprotonate the active site cysteine. A hydrophobic sequence (252)RFAQFL(257) at the end of the C-terminus may provide anchoring interactions preventing the tail from swinging away from the active site as seen in other APS/PAPS reductases.  相似文献   

19.
von Willebrand factor (VWF) is a multimeric glycoprotein that is required for normal hemostasis. After translocation into the endoplasmic reticulum, proVWF subunits dimerize through disulfide bonds between their C-terminal cystine knot-like (CK) domains. CK domains are characterized by six conserved cysteines. Disulfide bonds between cysteines 2 and 5 and between cysteines 3 and 6 define a ring that is penetrated by a disulfide bond between cysteines 1 and 4. Dimerization often is mediated by additional cysteines that differ among CK domain subfamilies. When expressed in a baculovirus system, recombinant VWF CK domains (residues 1957-2050) were secreted as dimers that were converted to monomers by selective reduction and alkylation of three unconserved cysteine residues: Cys(2008), Cys(2010), and Cys(2048). By partial reduction and alkylation, chemical and proteolytic digestion, mass spectrometry, and amino acid sequencing, the remaining intrachain disulfide bonds were characterized: Cys(1961)-Cys(2011) (), Cys(1987)-Cys(2041) (), Cys(1991)-Cys(2043) (), and Cys(1976)-Cys(2025). The mutation C2008A or C2010A prevented dimerization, whereas the mutation C2048A did not. Symmetry considerations and molecular modeling based on the structure of transforming growth factor-beta suggest that one or three of residues Cys(2008), Cys(2010), and Cys(2048) in each subunit mediate the covalent dimerization of proVWF.  相似文献   

20.
Sulfide oxidation is catalyzed by ancient membrane-bound sulfide:quinone oxidoreductases (SQR) which are classified into six different types. For catalysis of sulfide oxidation, all SQRs require FAD cofactor and a redox-active centre in the active site, usually formed between conserved essential cysteines. SQRs of different types have variation in the number and position of cysteines, highlighting the potential for diverse catalytic mechanisms. The photosynthetic purple sulfur bacterium, Thiocapsa roseopersicina contains a type VI SQR enzyme (TrSqrF) having unusual catalytic parameters and four cysteines likely involved in the catalysis. Site-directed mutagenesis was applied to identify the role of cysteines in the catalytic process of TrSqrF. Based on biochemical and kinetic characterization of these TrSqrF variants, Cys121 is identified as crucial for enzyme activity. The cofactor is covalently bound via a heterodisulfide bridge between Cys121 and the C8M group of FAD. Mutation of another cysteine present in all SQRs (Cys332) causes remarkably decreased enzyme activity (14.6% of wild type enzyme) proving important, but non-essential role of this residue in enzyme catalysis. The sulfhydril-blocking agent, iodoacetamide can irreversibly inactivate TrSqrF but only if substrates are present and the enzyme is actively catalyzing its reaction. When the enzyme is inhibited by iodoacetamide, the FAD cofactor is released. The inhibition studies support a mechanism that entails opening and reforming of the heterodisulfide bridge during the catalytic cycle of TrSqrF. Our study thus reports the first detailed structure-function analysis of a type VI SQR enzyme which enables the proposal of a distinct mechanism of sulfide oxidation for this class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号