首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The branch site helix from Saccharomyces cerevisiae with pseudouridine (ψ) incorporated in a phylogenetically conserved position of U2 snRNA features an extrahelical branch site adenosine (A) that forms a base triple interaction with the minor groove edge of a widely conserved purineU2 strand-pyrimidineintron strand (RU2-Yintron) base pair two positions upstream. In these studies, NMR spectra of a duplex in which 2-aminopurine (2ap), a fluorescent analog of adenine lacking the proposed hydrogen bond donor, was substituted for the branch site A, indicated that the substitution does not alter the extrahelical position of the branch site residue; thus, it appears that a hydrogen bond between the adenine amino group and the R-Y pair is not obligatory for stabilization of the extrahelical conformation. In contrast, reversal of the orientation of AU2-Uintron to UU2-Aintron resulted in an intrahelical position for the branch site A or 2ap. Fluorescence intensity of 2ap substituted for the branch site A with the original RU2-Yintron orientation (AU or GC) was high, consistent with an extrahelical position, whereas fluorescence in helices with the reversed R-Y orientation, or with a mismatched pair (A-U → G•A or U•C), was markedly quenched, implying that the residue was stacked in the helix. The A 5′ to the branch site residue was not extrahelical in any of the duplexes. These findings suggest that the RU2-Yintron base pair orientation in the ψ-dependent branch site helix plays an important role in positioning the branch site A for recognition and/or function.  相似文献   

2.
3.
4.
5.
Pre-mRNA splicing involves two transesterification steps catalyzed by the spliceosome. How RNA substrates are positioned in each step and the molecular rearrangements involved, remain obscure. Here, we show that mutations in PRP16, PRP8, SNU114 and the U5 snRNA that affect this process interact genetically with CWC21, that encodes the yeast orthologue of the human SR protein, SRm300/SRRM2. Our microarray analysis shows changes in 3′ splice site selection at elevated temperature in a subset of introns in cwc21Δ cells. Considering all the available data, we propose a role for Cwc21p positioning the 3′ splice site at the transition to the second step conformation of the spliceosome, mediated through its interactions with the U5 snRNP. This suggests a mechanism whereby SRm300/SRRM2, might influence splice site selection in human cells.  相似文献   

6.
Abstract

The solid-phase preparation of oligodeoxyribonucleotides covalently linked via nucleic bases with normal (3′-5′) or inverted (5′-5′) polarities is reported. The key-step of these syntheses is the preparation of the tethered dimers.  相似文献   

7.
Telomerase is thought to play an important role in the mechanism of tumor cell immortalization by maintenance of telomere length. To obtain information on the susceptibility of telomerase to nucleoside analogues, the effects of base-modified 3′-azido-2′,3′-dideoxynucleoside triphosphates on the enzyme were investigated. It is suggested that the 2-amino group of the nucleotide purine nucleus is important for the inhibitory activity. Telomere shortening caused by long-term treatment with these nucleosides is also described.  相似文献   

8.
9.
Exon definition is the predominant initial spliceosome assembly pathway in higher eukaryotes, but it remains much less well-characterized compared to the intron-defined assembly pathway. Addition in trans of an excess of 5′ss containing RNA to a splicing reaction converts a 37S exon-defined complex, formed on a single exon RNA substrate, into a 45S B-like spliceosomal complex with stably integrated U4/U6.U5 tri-snRNP. This 45S complex is compositonally and structurally highly similar to an intron-defined spliceosomal B complex. Stable tri-snRNP integration during B-like complex formation is accompanied by a major structural change as visualized by electron microscopy. The changes in structure and stability during transition from a 37S to 45S complex can be induced in affinity-purified cross-exon complexes by adding solely the 5′ss RNA oligonucleotide. This conformational change does not require the B-specific proteins, which are recruited during this stabilization process, or site-specific phosphorylation of hPrp31. Instead it is triggered by the interaction of U4/U6.U5 tri-snRNP components with the 5′ss sequence, most importantly between Prp8 and nucleotides at the exon–intron junction. These studies provide novel insights into the conversion of a cross-exon to cross-intron organized spliceosome and also shed light on the requirements for stable tri-snRNP integration during B complex formation.  相似文献   

10.
Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5′ splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem–loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem–loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5′ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5′ss sequence. The reduced 5′ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem–loop. The mechanism of 5′ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing.  相似文献   

11.
The production of 5-IMP and 5-GMP by enzymatic conversion from RNA using a continuous two packed-bed reactor was investigated. 5-Phosphodiesterase (5PD) and 5-adenylate deaminase (5AD) were immobilized in an acrylic resin to produce derivatives with about 15 U/g of support. The kinetic properties of the enzymes were described by Michaelis-Menten models: no significant differences were found in the K m value of the free and immobilized 5AD (60 and 20 m, respectively), whereas for 5PD the K m value was one order of magnitude higher for the immobilized enzyme (4.85 mg RNA/ml), probably due to diffusional limitations. Both enzymes remained stable after 8 h of use in a continuous packed-bed reactor whereas the half lives of the free enzymes were 193 min and 240 min at 40°C and 70°C for 5AD and 5PD, respectively. A procedure is proposed for the design of a continuous two packed-bed column process.F. Olmedo and F. Iturbe are with the Depto. de Alimentos y Biotecnologia, Facultad de Química, UNAM, México 04510, D.F., Mexico. J. Gomez-Hernández is with the Depto. de Biotecnología, UAM-1, Apdo. Postal 55-535, México 09340, D.F., Mexico. A. López-Munguía is with the Instituto de Biotecnología, Apartado Postal 510-3, Cuernavaca, Mor. 62271, Mexico  相似文献   

12.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

13.
14.
15.
16.
17.
Abstract

Di-t-butoxydichlorosilane was found to protect simultaneously 3′- and 5′-hydroxyls of uridine. The preliminary results on the dialkoxysilanediyl group introduction, properties and applications are presented.  相似文献   

18.
Who's on first? The U1 snRNP-5' splice site interaction and splicing   总被引:25,自引:0,他引:25  
U1 small nuclear ribonucleoprotein (snRNP) is important for pre-mRNA splicing both in yeast (Saccharomyces cerevisiae) and mammalian systems. The RNA component of U1 snRNP, U1 snRNA, interacts by base pairing with pre-mRNA 5' splice sites. This article examines recent evidence suggesting that U1 snRNP is important for an early step in spliceosome assembly rather than a late step that contributes to the specificity of 5' splice-site cleavage.  相似文献   

19.
A newly designed cyclic bis-naphthyridine carbamate dimer CMBL4 with a limited conformational flexibility was synthesized and characterized. Absorption spectra revealed that two naphthyridines in CMBL4 were stacked on each other in aqueous solutions. The most efficient binding of CMBL4 to DNA was observed for the sequence 5′-T-3′/5′-GG-3′ (T/GG) with the formation of a 1:1 complex, which is one of possible structural elements involved in the higher order structures of (TGG)n repeat DNA triggering the genome microdeletion. Surface plasmon resonance assay also showed the binding of CMBL4 with TGG repeat DNA. Potassium permanganate oxidation studies of CMBL4-bound duplex containing the T/GG site showed that the CMBL4-binding accelerated the oxidation of thymine at that site, which suggests the flipping out of the thymine base from a π-stack. Preferential binding was observed for CMBL4 compared with its acyclic variants, which suggests the marked significance of the macrocyclic structure for the recognition of the T/GG site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号