首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The aim of the present study was to perform a qualitative and quantitative analysis of the effect of different sucrose concentrations combined with ethylene glycol in the preservation of vitrified porcine preantral follicles. Fragments of ovarian cortex were vitrified in cryotubes containing 200 μl of the vitrification solution (30% Ethylene Glycol; 20% Fetal Bovine Serum; 0 M–0.25 M – 0.75 M or 1 M sucrose) and stored in liquid nitrogen for a week. Histological analysis showed that after vitrification the number of normal follicles decreased compared to the fresh tissue (control). The percentage of normal primordial follicles was sucrose dose dependent. The percentage of normal primary follicles was similar in 0 M or 0.25 M sucrose, while higher concentrations (0.75 M and 1 M) increased significantly the percentage of abnormal follicles (p < 0.05). Morphometric analysis showed a statistically significant reduction in the total area of primordial follicles with 0.75 M sucrose and a significant increase in the cytoplasmic area of primordial follicles with 0 M sucrose (p < 0.05). The qualitative and the quantitative analysis appear to be a complementary tool when choosing a vitrification protocol. For our cryopreservation system - vitrification of ovarian cortex slices in cryotubes-the best vitrification medium was TCM 199-Hepes with 30% de ethylene glycol, 20% of Fetal Bovine Serum and 0 or 0.25 M sucrose. The present study shows that the use of high sucrose concentrations in the vitrification solution has a deleterious effect on the preservation of porcine preantral follicles contained in ovarian tissue. Consequently, its use at 0.75 M or 1 M wouldn't be recommended.  相似文献   

4.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   

5.
Indole is a versatile pharmacophore, a privileged scaffold and an outstanding heterocyclic compound with wide ranges of pharmacological activities due to different mechanisms of action. It is an superlative moiety in drug discovery with the sole property of resembling different structures of the protein. Plenty of research has been taking place in recent years to synthesize and explore the various therapeutic prospectives of this moiety. This review summarizes some of the recent effective chemical synthesis (2014–2018) for indole ring. This review also emphasized on the structure–activity relationship (SAR) to reveal the active pharmacophores of various indole analogues accountable for anticancer, anticonvulsant, antimicrobial, antitubercular, antimalarial, antiviral, antidiabetic and other miscellaneous activities which have been investigated in the last five years. The precise features with motives and framework of each research topic is introduced for helping the medicinal chemists to understand the perspective of the context in a better way. This review will definitely offer the platform for researchers to strategically design diverse novel indole derivatives having different promising pharmacological activities with reduced toxicity and side effects.  相似文献   

6.
Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65–70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to survive these environmental stresses, where a finite amount of ATP generated through anaerobic metabolism is directed towards maintaining pro-survival functions, while most ATP-expensive cellular processes are temporarily reduced in function. Pyruvate dehydrogenase (PDH) is a vital metabolic enzyme that links anaerobic glycolysis to the aerobic TCA cycle and is an important regulatory site in MRD. PDH enzymatic activity is regulated via reversible protein phosphorylation in response to energetic demands of cells. This study explored the posttranslational regulation of PDH at three serine sites (S232, S293, S300) on the catalytic E1α subunit along with protein expression of four pyruvate dehydrogenase kinases (PDHK1-4) in response to 24 h Freezing, 8 h Thaw, 24 h Anoxia, and 4 h Recovery in the liver and skeletal muscle of R. sylvatica using Luminex multiplex technology and western immunoblotting. Overall, inhibitory regulation of PDH was evident during 24 h Freezing and 24 h Anoxia, which could indicate a notable reduction in glycoytic flux and carbon entry into the tricarboxylic acid cycle as part of MRD. Furthermore, the expression of PDHK1-4 and phosphorylation of PDH at S232, S293, and S300 were highly tissue and stress-specific, indicative of how different tissues respond differently to stress within the same organism.  相似文献   

7.
The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar to those described for other insect species. The qPCR analysis revealed that these genes have characteristic expression profiles in insect organs, suggesting that they have specific roles in insect physiology. Recombinant RpACBP-1 was able to bind acyl-CoA in an in vitro gel-shift assay. Moreover, heterologous RpACBP-1 expression in acb1Δ mutant yeast rescued the multi-lobed vacuole phenotype, indicating that RpACBP-1 acts as a bona fide acyl-CoA-binding protein. RpACBP-1 knockdown using RNAi caused triacylglycerol accumulation in the insect posterior midgut and a reduction in the number of deposited eggs. The amount of stored triacylglycerol was reduced in flight muscle, and the incorporation of fatty acids in cholesteryl esters was increased in the fat body. These results showed that RpACBP-1 participates in several lipid metabolism steps in R. prolixus.  相似文献   

8.
9.
《Journal of molecular biology》2019,431(24):5039-5062
Membrane lipids are essential for life; however, research on how cells regulate cell lipid composition has been falling behind for quite some time. One reason was the difficulty in establishing analytical methods able to cope with the cell lipid repertoire. Development of a diversity of mass spectrometry-based technologies, including imaging mass spectrometry, has helped to demonstrate beyond doubt that the cell lipidome is not only greatly cell type dependent but also highly sensitive to any pathophysiological alteration such as differentiation or tumorigenesis. Interestingly, the current popularization of metabolomic studies among numerous disciplines has led many researchers to rediscover lipids. Hence, it is important to underscore the peculiarities of these metabolites and their metabolism, which are both radically different from protein and nucleic acid metabolism. Once differences in lipid composition have been established, researchers face a rather complex scenario, to investigate the signaling pathways and molecular mechanisms accounting for their results. Thus, a detail often overlooked, but of crucial relevance, is the complex networks of enzymes involved in controlling the level of each one of the lipid species present in the cell. In most cases, these enzymes are redundant and promiscuous, complicating any study on lipid metabolism, since the modification of one particular lipid enzyme impacts simultaneously on many species. Altogether, this review aims to describe the difficulties in delving into the regulatory mechanisms tailoring the lipidome at the activity, genetic, and epigenetic level, while conveying the numerous, stimulating, and sometimes unexpected research opportunities afforded by this type of studies.  相似文献   

10.
11.
To promote the decomposition of sugarcane bagasse (SCB) for conversion into value-added products and to reduce waste, the capability of fungal mixes (FMs) to degrade SCB was examined. A total of 169 isolates from SCB and non-SCB were categorized as thermotolerant and thermoresistant. Thirty-six fungal candidates were screened for the presence of polyphenol oxidase, endoglucanase (EDN) and xylanase (XLN) activities, and EDN and XLN activities were quantitated. Five identified isolates (Aspergillus flavus AG10; Aspergillus niger AG68 & NB23; and Penicillium citrinum AG93 & AG140) were selected as the best enzyme producers, and 15 moderately to highly xylolytic, cellulolytic and ligninolytic isolates were added to construct FMs. Using a Taguchi design, the top ten reducing sugar-producing FMs (no. 12 showed the maximum amount of reducing sugar, at 2.11 mg g−1, followed by no. 7, 15, 2, 16, 11, 13, 6, 4, & 8) were selected as potential agents for decomposition durations of 1, 2 and 3 months. The maximum decrease in SCB materials compared with the control was generated by FM 6 (9.08% cellulose reduction); FM 13 (21.03% hemicellulose reduction); and FM 16 (9.21% lignin reduction). These results indicate the potential use of SCB as a substrate for synergistic FMs. These FMs could be applied to the large-scale composting of SCB and other related agricultural residues, thus improving the biological pretreatment of lignocellulose.  相似文献   

12.
The complete mitochondrial genome (mitogenome) of Pycnonotus xanthorrhous was sequenced via next generation sequencing. The full length of the circular genome is 16,952 bp. It consists of 37 typical animal mitochondrial genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) and 2 ribosomal RNA (rRNA) genes. P. xanthorrhous also contains one control region (CR) and one pseudo-control region, and shares the identical gene arrangements with sequenced Pycnonotus spp. which differs from the typical vertebrates gene order. Phylogenetic analyses indicates that Passerida sensu stricto contains three major clades and the core Sylvioidea form a monophyletic group. Furthermore, we investigated the evolution of control region within this lineage and revealed the multiple independent origins of duplicate control region.  相似文献   

13.
The acrosome complex plays an indispensable role in the normal function of mature spermatozoa. However, the dynamic process of acrosome complex formation in insect remains poorly understood. Gampsocleis gratiosa Brunner von Wattenwyl possesses the typical characteristic of insect sperms, which is tractable in terms of size, and therefore was selected for the acrosome formation study in this report. The results show that acrosome formation can be divided into six phases: round, rotating, rhombic, cylindrical, transforming and mature phase, based on the morphological dynamics of acrosome complex and nucleus. In addition, the cytoskeleton plays a critical role in the process of acrosome formation. The results from this study indicate that: (1) glycoprotein is the major component of the acrosome proper; (2) the microfilament is one element of the acrosome complex, and may mediate the morphologic change of the acrosome complex; (3) the microtubules might also shape the nucleus and acrosome complex during the acrosome formation.  相似文献   

14.
15.
Adult development and production of up to 400 eggs within the pupal case of female silkmoths are both dependent on 20-hydroxyecdysone (20E), the steroid hormone of insects. When adult development was initiated with tebufenozide, the non-steroidal ecdysteroid agonist, instead of 20E, full development of all epidermal tissues like the wing was witnessed, but ovarian growth and egg formation was minimal. Administration of tebufenozide to female pharate adults caused disruption of the follicular epithelium, produced nurse cell damage, and inhibited oogenesis. Reduced ability to synthesize RNA and protein accompanied these tebufenozide induced morphological disturbances of the follicles. In vivo accumulation of vitellogenin (Vg) from the hemolymph was reduced in tebufenozide treated female ovaries as well as their ability to accumulate Vg in vitro. Determination of protein staining intensity and antibody reactivity of Vg pointed out that hemolymph Vg level remained fairly constant all through adult development whether induced by 20E or tebufenozide. Measurement of hemolymph volumes and hemolymph Vg levels of control and experimental animals allowed us to conclude that egg development involves the uptake of all the hemolymph proteins and not Vg alone. The loss of hemolymph that accompanies egg maturation was considerably reduced in tebufenozide initiated female pharate adults. 20E could not overcome ovarian growth inhibitory effects of tebufenozide. Dual mechanisms, one involving ecdysteroid antagonist action at the beginning of development, and the other unrelated to that function during heightened egg formation, are needed explain the biphasic inhibitory actions of tebufenozide on silkmoth ovaries.  相似文献   

16.
In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors.  相似文献   

17.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

18.
Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/.  相似文献   

19.
20.
Voltage-gated Ca2+ channels allow the influx of Ca2+ ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca2+ transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca2+ channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca2+ channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca2+ channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号