首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

2.
Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.  相似文献   

3.
Here we report identification of the lkh1 gene encoding a LAMMER kinase homolog (Lkh1) from a screen for DNA repair-deficient mutants in Ustilago maydis. The mutant allele isolated results from a mutation at glutamine codon 488 to a stop codon that would be predicted to lead to truncation of the carboxy-terminal kinase domain of the protein. This mutant (lkh1Q488*) is highly sensitive to ultraviolet light, methyl methanesulfonate, and hydroxyurea. In contrast, a null mutant (lkh1Δ) deleted of the entire lkh1 gene has a less severe phenotype. No epistasis was observed when an lkh1Q488* rad51Δ double mutant was tested for genotoxin sensitivity. However, overexpressing the gene for Rad51, its regulator Brh2, or the Brh2 regulator Dss1 partially restored genotoxin resistance of the lkh1Δ and lkh1Q488* mutants. Deletion of lkh1 in a chk1Δ mutant enabled these double mutant cells to continue to cycle when challenged with hydroxyurea. lkh1Δ and lkh1Q488* mutants were able to complete the meiotic process but exhibited reduced heteroallelic recombination and aberrant chromosome segregation. The observations suggest that Lkh1 serves in some aspect of cell cycle regulation after DNA damage or replication stress and that it also contributes to proper chromosome segregation in meiosis.  相似文献   

4.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   

5.
《IRBM》2014,35(1):46-52
BackgroundQuantified gait analysis is a rising technology used increasingly to assess motor disorders. Normal reference data are required in order to evaluate patients, but there are no reference data available for the Tunisian healthy population.AimTo assess the features of normal Tunisian gait pattern, and examine the intrinsic reliability of spatio-temporal, kinematic and kinetic parameters within a new specific reference database.MethodsEighteen healthy active-young adults (age: 23.30 ± 2.54 years, height: 1.78 ± 0.04 m and, weight: 70.00 ± 4.80 kg) have participated to five trials of step gait where the dominant lower limb were recorded. Two over the five trials were randomly selected to be further analyzed. Twenty-three spatio-temporal, kinematic and kinetic parameters determined from 3-dimensional gait analysis. The intrinsic reliability was examined for each variable and our results were compared with those available in the literature.ResultsTwelve over 23 parameters have an excellent intrinsic reliability (P > 0.05, ICC > 0.9 and SEM < 5% of the grand mean). There are similarities with other studies (P < 0.05) but we noticed the existence of some specificity (the height of hip extension peak and the low cadence of gait) that could characterize the Tunisian population.ConclusionA specific reference database of the gait cycle has been established for healthy Tunisian active-young adults and excellent inter-trial reliability may be observed for different variables.  相似文献   

6.
Gangliosides play important roles in the development, differentiation and proliferation of mammalian cells. They bind to other cell membrane components through their terminal sialic acids. Different gangliosides influence cellular functions based on the positions and linkages of sialic acids. Expression of gangliosides mainly depends on the status of sialic acid-modulatory enzymes, such as different types of sialyltransferases and sialidases. One such sialyltransferase, disialoganglioside GD3 synthase, is specifically responsible for the production of GD3. Pancreatic ductal adenocarcinoma, making up more than 90% of pancreatic cancers, is a fatal malignancy with poor prognosis. Despite higher sialylation status, the disialoganglioside GD3 level is very low in this cancer. However, the exact status and function of this disialoganglioside is still unknown. Here, we intended to study the intracellular mechanism of disialoganglioside GD3-induced apoptosis and its correlation with the adhesion and angiogenic pathways in pancreatic cancer. We demonstrated that disialoganglioside GD3 synthase-transfected cells showed enhanced apoptosis and it caused the arrest of these cells in the S-phase of the cell cycle. Integrins, a family of transmembrane proteins play important role in cell–cell recognition, invasion, adhesion and migration. disialoganglioside GD3 co-localised with integrin-β1 and thereby inhibited it's downstream signalling in transfected cells. Transfected cells exhibited inhibition of cell adhesion with extracellular matrix proteins. Enhanced GD3 expression down regulated angiogenesis-regulatory proteins and inhibited epidermal growth factor/vascular endothelial growth factor-driven angiogenic cell growth in these cells. Taken together, our study provides support for the GD3-induced cell cycle arrest, disruption of integrin-β1-mediated anchorage, inhibition of angiogenesis and thereby induced apoptosis in pancreatic cancer cells.  相似文献   

7.
Vimentin expression correlates well with migratory and invasive potential of the carcinoma cells. The molecular mechanism by which vimentin regulates cell motility is not yet clear. Here, we addressed this issue by depleting vimentin in oral squamous cell carcinoma derived cell line. Vimentin knockdown cells showed enhanced adhesion and spreading to laminin-5. However, we found that they were less invasive as compared to the vector control cells. In addition, signaling associated with adhesion behavior of the cell was increased in vimentin knockdown clones. These findings suggest that the normal function of β4 integrin as mechanical adhesive device is enhanced upon vimentin downregulation. As a proof of principle, the compromised invasive potential of vimentin depleted cells could be rescued upon blocking with β4 integrin adhesion-blocking (ASC-8) antibody or downregulation of β4 integrin in vimentin knockdown background. Interestingly, plectin which associates with α6β4 integrin in the hemidesmosomes, was also found to be upregulated in vimentin knockdown clones. Furthermore, experiments on lysosome and proteasome inhibition revealed that perhaps vimentin regulates the turnover of β4 integrin and plectin. Moreover, an inverse association was observed between vimentin expression and β4 integrin in oral squamous cell carcinoma (OSCC). Collectively, our results show a novel role of vimentin in modulating cell motility by destabilizing β4 integrin-mediated adhesive interactions. Further, vimentin-β4 integrin together may prove to be useful markers for prognostication of human oral cancer.  相似文献   

8.
Elevated transforming growth factor β1 (TGFβ1) levels are frequently observed in chronic kidney disease (CKD) patients. TGFβ1 contributes to development of medial vascular calcification during hyperphosphatemia, a pathological process promoted by osteo−/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Vasorin is a transmembrane glycoprotein highly expressed in VSMCs, which is able to bind TGFβ to inhibit TGFβ signaling. Thus, the present study explored the effects of vasorin on osteo−/chondrogenic transdifferentiation and calcification of VSMCs. Primary human aortic smooth muscle cells (HAoSMCs) were treated with recombinant human TGFβ1 or β-glycerophosphate without or with recombinant human vasorin or vasorin gene silencing by siRNA. As a result, TGFβ1 down-regulated vasorin mRNA expression in HAoSMCs. Vasorin supplementation inhibited TGFβ1-induced pathway activation, SMAD2 phosphorylation and downstream target genes expression in HAoSMCs. Furthermore, treatment with exogenous vasorin blunted, while vasorin knockdown augmented TGFβ1-induced osteo−/chondrogenic transdifferentiation of HAoSMCs. In addition, phosphate down-regulated vasorin mRNA expression in HAoSMCs. Phosphate-induced TGFβ1 expression was not affected by addition of exogenous vasorin. Nonetheless, the phosphate-induced TGFβ1 signaling, osteo−/chondrogenic transdifferentiation and calcification of HAoSMCs were all blunted by vasorin. Conversely, silencing of vasorin aggravated osteoinduction in HAoSMCs during high phosphate conditions. Aortic vasorin expression was reduced in the hyperphosphatemic klotho-hypomorphic mouse model of CKD-related vascular calcification. In conclusion, vasorin, which suppresses TGFβ1 signaling and protects against osteo−/chondrogenic transdifferentiation and calcification of VSMCs, is reduced by pro-calcifying conditions. Thus, vasorin is a novel key regulator of VSMC calcification and may represent a potential therapeutic target for vascular calcification during CKD.  相似文献   

9.
10.
《Phytomedicine》2014,21(12):1582-1586
In the present study, it is shown for the first time that an extract of Hintonia latiflora (HLE) which is used as an antidiabetic herbal medicine, is not only able to decrease blood glucose concentration but additionally exerts a vasodilating effect. Accordingly, this extract might have a positive influence on diabetes-associated dysfunction of blood vessels.The vasodilating effect was demonstrated in vitro in aortic rings of guinea pigs as well as in vivo in rabbits. Aortic rings pre-contracted with noradrenaline (NA) could completely be relaxed by HLE (EC50: 51.98 mg/l). In contrast, potassium-induced contractions were not diminished by HLE. Therefore, it can be suggested that the vasodilating effect of HLE is primarily the result of an inhibition of G protein-induced increase in intracellular calcium and not of a blockade of voltage-operated L-type calcium channels.The neoflavonoid coutareagenin (COU), a constituent of HLE which in part is responsible for the blood glucose-lowering effect of HLE, also relaxed NA-induced contractions of aortic rings (EC50: 32.55 mg/l) and only weakly inhibited potassium-induced contractions.Experiments in aortic rat cells revealed that calcium transients evoked by vasopressin were suppressed by 60 mg/l COU supporting the idea of an inhibition of G protein-induced intracellular calcium release by a constituent of HLE.To study the effect of HLE on vascular tone under in vivo conditions, ultrasound measurements were carried out in conscious rabbits which received a single oral dose of HLE. Under the influence of HLE, a vasodilation combined with a lowering of blood flow velocity could be observed in the abdominal aorta and the common carotid artery. Additionally, a decrease in blood glucose concentration in the HLE group occurred.The combination of a blood glucose-lowering with a vasodilating effect may be helpful for reducing angiopathies, typical long-term complications in patients with diabetes mellitus.  相似文献   

11.
The filamentous cyanobacterium Planktothrix rubescens produces secondary metabolites called microcystins (MC) that are potent toxins for most eukaryotes, including zooplankton grazers, cattle and humans. P. rubescens occurs in many deep and thermally stratified lakes throughout Europe. In Lake Zurich (Switzerland), it re-appeared in the 1970s concomitant with decreasing eutrophication. Since then, P. rubescens has become the dominant species in this major drinking water reservoir, where it forms massive metalimnetic blooms during late summer. These cyanobacteria harbor subpopulations of non-MC producers, but little is known about the environmental factors affecting the success of such genotypes. The non-MC-producing subpopulation of P. rubescens was studied using a quantitative real-time PCR (qPCR) assay on the MC synthetase (mcy) gene cluster that targets a deletion on the mcyH and mcyA genes, which inactivates MC biosynthesis. Two complementary qPCR assays were used to assess the total population abundance (based on the 16S rDNA gene) and the mcy gene copy number (based on a conserved region in the adenylation domain of the mcyB gene). The objective was to evaluate the seasonal patterns of the share of non-MC-producing filaments in the total P. rubescens population. The mcyHA mutants were present in low proportions (up to 14%) throughout the year. Their highest relative abundances occurred during the winter mixis, when total concentrations of P. rubescens were minimal. The MC deficient mutants seemed to better survive in sparse populations, possibly because of lower grazing pressure and a consequently reduced need for MC-mediated protection. Alternatively, the mutants might cope better with the sub-optimal, stressful pressure and light conditions during the winter mixis. Altogether, our results suggest that subtle trade-offs might seasonally determine the proportions of non-MC producers within P. rubescens populations.  相似文献   

12.
13.
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1–3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds.Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.  相似文献   

14.
In a birth cohort living in Chitwan Valley, lowland Nepal, we have previously reported inverse associations between in utero levels of lead (Pb), arsenic (As) and neurodevelopment at birth measured by the Brazelton Neonatal Behavioral Assessment Scale, third edition (NBAS III). In the present paper, a follow-up of the same cohort was made on 24-month-old infants regarding the neurodevelopmental effects of these metals, taking the postnatal environment into account. In total, the same100 mother-infant pairs as the previous study, whose Pb, As, and Zn concentrations in cord blood were known, were recruited. Postnatal raising environment was evaluated using the Home Observation for Measurement of Environment (HOME) scale. Neurodevelopment of children at 24 months of age (n = 74) was assessed using the Bayley Scale of Infant Development, Second Edition (BSID II). Multivariable regression adjusting for covariates was performed to determine the associations of in utero levels of toxic and essential elements and the home environment with neurodevelopment scores. Unlike the NBAS III conducted for newborns, none of the BSID II cluster scores in 24-month-old infants were associated with cord blood levels of Pb, As, and Zn. The total HOME score was positively associated with the mental development scale (MDI) score (coefficient = 0.67, at 95% CI = 0.03 to 1.31). In this cohort, a detrimental effect of in utero Pb and As on neurodevelopmental indicators observed at birth disappeared at 24 months, while an association between neurodevelopment and home environment continued.  相似文献   

15.
Exposure of microbial cells to sub-lethal stresses is known to increase cell robustness. In this work, a two-compartment bioreactor in which microbial cells are stochastically exposed to sub-lethal temperature stresses has been used in order to investigate the response of the stress sensitive Bifidobacterium bifidum THT 0101 to downstream processing operations. A stochastic model validated by residence time distribution experiments has shown that in the heat-shock configuration, a two-compartment bioreactor (TCB) allows the exposure of microbial cells to sub-lethal temperature of 42 °C for a duration comprised between 100 and 300 s. This exposure resulted in a significant increase of cell resistance to freeze–drying by comparison with cells cultivated in conventional bioreactors or in the TCB in the cold shock mode (CS-TCB). The mechanism behind this robustness seems to be related with the coating of microbial cells with exopolysaccharide (EPS), as assessed by the change of the zeta potential and the presence of higher EPS concentration after heat shock. Conditioning of Bifidobacteria on the basis of the heat shock technique is interesting from the practical and economical point of view since this strategy can be directly implemented in the bioreactor during stationary phase preceding cell recovery and freeze–drying.  相似文献   

16.
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4–3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7–13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6–6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.  相似文献   

17.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   

18.
Interleukin-1 receptor type I (IL-1RI) belongs to a superfamily of proteins characterized by an intracellular Toll/IL-1 receptor (TIR) domain. This domain harbors three conserved regions called boxes 1-3 that play crucial roles in mediating IL-1 responses. Boxes 1 and 2 are considered to be involved in binding of adapter molecules. Amino acids possibly crucial for IL-1RI signaling were predicted via homology models of the IL-1RI TIR domain based on the crystal structure of IL-1RAPL. The role of ten of these residues was investigated by site-directed mutagenesis and a functional luciferase assay reflecting NF-κB activity in transiently transfected Jurkat cells. In particular, the mutants E437K/D438K, E472A/E473A and S465A/S470A/S471A/E472A/E473A showed decreased and the mutant E437A/D438A increased IL-1 responsiveness compared to the mouse IL-1RI wild type. In conclusion, the αC′ helix (Q469-E473 in mouse IL-1RI) is probably involved in heterotypic interactions of IL-1RI with IL-1RAcP or MyD88.  相似文献   

19.
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.  相似文献   

20.
The first eukaryotic NER factor that recognizes NER substrates is the heterodimeric XPC-RAD23B protein. The currently accepted hypothesis is that this protein recognizes the distortions/destabilization caused by DNA lesions rather than the lesions themselves. The resulting XPC-RAD23B–DNA complexes serve as scaffolds for the recruitment of subsequent NER factors that lead to the excision of the oligonucleotide sequences containing the lesions. Based on several well-known examples of DNA lesions like the UV radiation-induced CPD and 6–4 photodimers, as well as cisplatin-derived intrastrand cross-linked lesions, it is generally believed that the differences in excision activities in human cell extracts is correlated with the binding affinities of XPC-RAD23B to these DNA lesions. However, using electrophoretic mobility shift assays, we have found that XPC-RAD23B binding affinities of certain bulky lesions derived from metabolically activated polycyclic aromatic hydrocarbon compounds such as benzo[a]pyrene and dibenzo[a,l]pyrene, are not directly, or necessarily correlated with NER excision activities observed in cell-free extracts. These findings point to features of XPC-RAD23B–bulky DNA adduct complexes that may involve the formation of NER-productive or unproductive forms of binding that depend on the structural and stereochemical properties of the DNA adducts studied. The pronounced differences in NER cleavage efficiencies observed in cell-free extracts may be due to differences in the successful recruitment of subsequent NER factors by the XPC-RAD23B–DNA adduct complexes, and/or in the verification step. These phenomena appear to depend on the structural and conformational properties of the class of bulky DNA adducts studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号