首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data were collected on 85 Simmental and Simmental × Holstein–Friesian heifers. During the indoor winter period, they were offered grass silage ad libitum and 2 kg of concentrate daily, and individual dry matter intake (DMI) and growth was recorded over 84 days. Individual grass herbage DMI was determined at pasture over a 6-day period, using the n-alkane technique. Body condition score, skeletal measurements, ultrasonic fat and muscle depth, visual muscularity score, total tract digestibility, blood hormones, metabolites and haematology variables and activity behaviour were measured for all heifers. Phenotypic residual feed intake (RFI) was calculated for each animal as the difference between actual DMI and expected DMI during the indoor winter period. Expected DMI was calculated for each animal by regressing average daily DMI on mid-test live weight (LW)0.75 and average daily gain (ADG) over an 84-day period. Standard deviations above and below the mean were used to group animals into high (>0.5 s.d.), medium (±0.5 s.d.) and low (<0.5 s.d.) RFI. Overall mean (s.d.) values for DMI (kg/day), ADG (kg), feed conversion ratio (FCR) kg DMI/kg ADG and RFI (kg dry matter/day) were 5.82 (0.73), 0.53 (0.18), 12.24 (4.60), 0.00 (0.43), respectively, during the RFI measurement period. Mean DMI (kg/day) and ADG (kg) during the grazing season was 9.77 (1.77) and 0.77 (0.14), respectively. The RFI groups did not differ (P > 0.05) in LW, ADG or FCR at any stage of measurement. RFI was positively correlated (r = 0.59; P < 0.001) with DMI during the RFI measurement period but not with grazed grass herbage DMI (r = 0.06; P = 0.57). Low RFI heifers had 0.07 greater (P < 0.05) concentration of plasma creatinine than high RFI heifers and, during the grazed herbage intake period, spent less time standing and more time lying (P < 0.05) than high RFI heifers. However, low and high RFI groups did not differ (P > 0.05) in ultrasonic backfat thickness or muscle depth, visual muscle scores, skeletal size, total tract digestibility or blood hormone and haematology variables at any stage of the experiment. Despite a sizeable difference in intake of grass silage between low and high RFI heifers during the indoor winter period, there were no detectable differences between RFI groupings for any economically important performance traits measured when animals were offered ensiled or grazed grass herbage.  相似文献   

2.
Current trends in the beef industry focus on selecting production traits with the purpose of maximizing calf weaning weight; however, such traits may ultimately decrease overall post-weaning productivity. Therefore, the objective of this study was to evaluate the effects of actual milk yield in mature beef cows on their offspring’s dry matter intake (DMI), BW, average daily gain, feed conversion ratio (FCR) and residual feed intake (RFI) during a ~75-day backgrounding feeding trial. A period of 24-h milk production was measured with a modified weigh-suckle-weigh technique using a milking machine. After milking, cows were retrospectively classified as one of three milk yield groups: Lower (6.57±1.21 kg), Moderate (9.02±0.60 kg) or Higher (11.97±1.46 kg). Calves from Moderate and Higher milk yielding dams had greater (P<0.01) BW from day 0 until day 75 at the end of the backgrounding feeding phase; however, day 75 BW were not different (P=0.36) between Lower and Moderate calves. Body weight gain was greater (P=0.05) for Lower and Moderate calves from the day 0 BW to day 35 BW compared with Higher calves. Overall DMI was lower (P=0.03) in offspring from Lower and Moderate cows compared with their Higher milking counterparts. With the decreased DMI, FCR was lower (P=0.03) from day 0 to day 35 in calves from Lower and Moderate milk yielding dams. In addition, overall FCR was lower (P=0.02) in calves from Lower and Moderate milk yielding dams compared with calves from Higher milk yielding dams. However, calving of Lower milk yielding dams had an increased (P=0.04) efficiency from a negative RFI value compared with calves from Moderate and Higher milking dams. Results from this study suggest that increased milk production in beef cows decreases feed efficiency during a 75-day post-weaning, backgrounding period of progeny.  相似文献   

3.
It is essential to quantify the potential of tropical grasslands to allow significant feed efficiency for grazing livestock in controlled conditions such as at pasture. We conducted a quantitative analysis of published studies reporting the experimental results of average daily gains (ADG) and diet characteristics obtained specifically under grazing conditions (17 publications and 41 experiments), which have been less studied compared with controlled conditions in stalls. The database was analyzed to determine the average and range of values obtained for ADG (g/kg BW), dry matter digestibility, intake (DMI) and digestible DMI (DDMI, g/kg BW) and feed conversion efficiencies (FCE), as well as to predict the response of these parameters to the main strategies investigated in the literature – that is, mainly the stocking rate (SR) and the concentrate intake (CI). The ADG reached 1.2 kg BW per day and was directly linked to DDMI (ADG=−1.63+0.42 DDMI −0.0084 DDMI2, n=90, r.m.s.e=0.584, R2=0.93). The DDMI, which was representative of the nutrient input, was driven mainly by DMI rather than dry matter digestibility, whereas these two parameters did not correlate (r=0.068, P=0.56). The average global FCE (0.11 g ADG/g DDMI) showed a greater association with the metabolic FCE (0.17 g ADG/g DMI) than the digestive FCE (0.62). The CI (g DM/kg BW) increased ADG (ADG=2376+CI 56.1, n=16, r.m.s.e.=441, R2=0.95). The SR expressed as kg BW/ha decreased the individual ADG by 1.19 g/kg BW per additional ton of BW/ha, whereas the global ADG calculated per ha increased by 0.57 per additional ton BW/ha. When the SR was expressed as kg BW/ton DM and per ha rather than as kg BW/ha, the impact on the individual ADG decreased by 0.18 or 0.86 g per additional ton BW/ha, depending on the initial BW of the cattle. These results provide a better view of the potential performance and feeding of cattle in tropical grasslands. The results provide an improved quantification of the relationships between diet and performance, as well as the overall quantitative impact of SR and supplementation.  相似文献   

4.
Breeding values for feed intake and feed efficiency in beef cattle are generally derived indoors on high-concentrate (HC) diets. Within temperate regions of north-western Europe, however, the majority of a growing beef animal’s lifetime dietary intake comes from grazed grass and grass silage. Using 97 growing beef cattle, the objective of the current study was to assess the repeatability of both feed intake and feed efficiency across 3 successive dietary test periods comprising grass silage plus concentrates (S+C), grazed grass (GRZ) and a HC diet. Individual DM intake (DMI), DMI/kg BW and feed efficiency-related parameters, residual feed intake (RFI) and gain to feed ratio (G : F) were assessed. There was a significant correlation for DMI between the S+C and GRZ periods (r = 0.32; P < 0.01) as well as between the S+C and HC periods (r = 0.41; P < 0.001), whereas there was no association for DMI between the GRZ and HC periods. There was a significant correlation for DMI/kg BW between the S+C and GRZ periods (r = 0.33; P < 0.01) and between the S+C and HC periods (r = 0.40; P < 0.001), but there was no association for the trait between the GRZ and HC periods. There was a significant correlation for RFI between the S+C and GRZ periods (r = 0.25; P < 0.05) as well as between S+C and HC periods (r = 0.25; P < 0.05), whereas there was no association for RFI between the GRZ and HC periods. Gain to feed ratio was not correlated between any of the test periods. A secondary aspect of the study demonstrated that traits recorded in the GRZ period relating to grazing bite rate, the number of daily grazing bouts and ruminating bouts were associated with DMI (r = 0.28 to 0.42; P < 0.05 - 0.001), DMI/kg BW (r = 0.36 to 0.45; P < 0.01 - 0.001) and RFI (r = 0.31 to 0.42; P < 0.05 - 0.001). Additionally, the number of ruminating boli produced per day and per ruminating bout were associated with G : F (r = 0.28 and 0.26, respectively; P < 0.05). Results from this study demonstrate that evaluating animals for both feed intake and feed efficiency indoors on HC diets may not reflect their phenotypic performance when consuming conserved forage-based diets indoors or when grazing pasture.  相似文献   

5.
There is absence knowledge about the effects of lactation trimester and parity on eating behavior, production and efficiency of dairy cows. Objective of this study was to identify and characterize in 340 dairy cows, the 20% high efficient (HE), 20% low efficient (LE) and 60% mid efficient (ME) cows according to their individual residual feed intake (RFI) values, within and between lactation trimesters and between 1st and 2nd parities. Efficiency effect within each lactation trimester, was exhibited in daily dry matter intake (DMI), eating rate and meal size, that were the highest in LE cows, moderate in the ME cows and lowest in the HE group. Daily eating time, meal frequency, yields of milk and energy-corrected milk (ECM) and BW were similar in the three efficiency groups within each trimester. The lower efficiency of the LE cows in each trimester attributes to their larger metabolic energy intake, heat production and energy losses. In subgroup of 52 multiparous cows examined along their 1st and 2nd trimesters, milk and ECM production, DMI, eating behavior and efficiency traits were similar with high Pearson’s correlation (r=0.78 to 0.89) between trimesters. In another subgroup of 42 multiparous cows measured at their 2nd and 3rd trimesters, milk and ECM yield, DMI and eating time were reduced (P<0.01) at the 3rd trimester, but eating rate, meal frequency and meal size remained similar with high Pearson’s correlation (r=0.74 to 0.88) between trimesters. In subgroup of 26 cows measured in 1st and 2nd parities, DMI, BW, milk and ECM yield, and ECM/DMI increased in the 2nd lactation, but eating behavior and RFI traits were similar in both parities. These findings encourage accurate prediction of DMI based on a model that includes eating behavior parameters, together with individual measurement of ECM production. This can be further used to identify HE cows in commercial herd, a step necessary for potential genetic selection program aimed to improve herd efficiency.  相似文献   

6.
Residual feed intake (RFI) is the difference between actual and predicted dry matter intake (DMI) of individual animals. Recent studies with Holstein-Friesian calves have identified an ~20% difference in RFI during growth (calf RFI) and these groups remained divergent in RFI during lactation. The objective of the experiment described here was to determine if cows selected for divergent RFI as calves differed in milk production, reproduction or in the profiles of BW and body condition score (BCS) change during lactation, when grazing pasture. The cows used in the experiment (n=126) had an RFI of −0.88 and +0.75 kg DM intake/day for growth as calves (efficient and inefficient calf RFI groups, respectively) and were intensively grazed at four stocking rates (SR) of 2.2, 2.6, 3.1 and 3.6 cows/ha on self-contained farmlets, over 3 years. Each SR treatment had equal number of cows identified as low and high calf RFI, with 24, 28, 34 and 40/11 ha farmlet. The cows divergent for calf RFI were randomly allocated to each SR. Although SR affected production, calf RFI group (low or high) did not affect milk production, reproduction, BW, BCS or changes in these parameters throughout lactation. The most efficient animals (low calf RFI) lost similar BW and BCS as the least efficient (high calf RFI) immediately post-calving, and regained similar BW and BCS before their next calving. These results indicate that selection for RFI as calves to increase efficiency of feed utilisation did not negatively affect farm productivity variables (milk production, BCS, BW and reproduction) as adults when managed under an intensive pastoral grazing system.  相似文献   

7.
DM intake (DMI) for individual pens of cattle is recorded daily or averaged across each week by most commercial feedlots as an index of performance. Numerous factors impact DMI by feedlot cattle. Some are available at the start of the feedlot period (initial BW, sex), and others become available early in the feeding period (daily DMI during adaptation) or more continuously (daily DMI from the previous week). To evaluate the relative impact of these factors on daily DMI during individual weeks within the feedlot period, we employed a dataset compiled from 2009 to 2014 from one commercial feedlot, including 4 132 pens (485 458 cattle), which were split into two fractions: 80% were used to calculate DMI regressions on these factors to develop a prediction equation for mean DMI for each week of the feeding period, and 20% were reserved to test the adequacy of these prediction equations. Correlations were used to determine the relationship between all available variables with observed DMI. These variables were then included in the generalized least squares regression models. A veracity test of the model was performed against the reserved data. Daily DMI from previous week was the factor most highly correlated with daily DMI (P < 0.10) during from week 6 to week 31, accounting for approximately 70% of the variation, followed by mean daily DMI during adaptation period (weeks 1–4), including in the prediction model from weeks 5 to 12. Initial shrunk BW (ISBW) was the third most correlated factor, which was included in prediction equations from week 5 to week 20. Sex entered the prediction model only after week 8. Daily DMI for each test week within the feeding period was predicted closely (r2 = 0.98) by these four factors (RMSE = 0.155 kg). In conclusion, the mean daily DMI during each week of the finishing period for a pen of cattle could be predicted closely based on mean daily DMI intake during the previous week plus other variables available early in a feedlot period (daily DMI during adaptation period, ISBW and sex).  相似文献   

8.
Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers’ grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P<0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI (P>0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.  相似文献   

9.
Two experiments were conducted to evaluate use of chromium mordanted neutral detergent residue (Cr-NDr) and cobalt EDTA (Co-EDTA) as predictors of dry matter intake (DMI) in high producing grazing dairy cows. The first experiment was conducted with 10 lactating Holstein cows individually fed a total mixed ration (TMR) in confinement, and dosed with Cr-NDr and Co-EDTA twice daily at milking times for 12-days to validate the markers used for the second experiment. The Cr-NDr accounted for 96% of the variation (r2) in DMI, while Co-EDTA underpredicted DMI by 43% (r2=0.65). The second experiment was conducted on a pasture-based dairy farm, to evaluate the use of Cr-NDr to predict DMI of grazing dairy cows. 15 and 14 high producing dairy cows in trial 1 and 2, respectively, were dosed twice a day at milking times with Cr-NDr for 12-days. Mean total DMI estimated from marker recoveries were unrealistically high (5.95 and 5.52% of body weight for trials 1 and 2, respectively). It was concluded that either diurnal variation in fecal excretion of the marker or a failure in the technique of collecting pasture samples that reflected the cows’ true grazing selection in order to determine pasture composition occurred.  相似文献   

10.
The increase in the worldwide demand for dairy products, associated with global warming, will emphasize the issue of water use efficiency in dairy systems. The evaluation of environmental issues related to the management of animal dejections will also require precise biotechnical models that can predict effluent management in farms. In this study, equations were developed and evaluated for predicting the main water flows at the dairy cow level, based on parameters related to cow productive performance and diet under thermoneutral conditions. Two datasets were gathered. The first one comprised 342 individual measurements of water balance in dairy cows obtained during 18 trials at the experimental farm of Méjussaume (INRA, France). Predictive equations of water intake, urine and fecal water excretion were developed by multiple regression using a stepwise selection of regressors from a list of seven candidate parameters, which were milk yield, dry matter intake (DMI), body weight, diet dry matter content (DM), proportion of concentrate (CONC) and content of crude protein (CP) ingested with forage and concentrate (CPf and CPc, g/kg DM). The second dataset was used for external validation of the developed equations and comprised 196 water flow measurements on experimental lots obtained from 43 published papers related to water balance or digestibility measurements in dairy cows. Although DMI was the first predictor of the total water intake (TWI), with a partial r2 of 0.51, DM was the first predictive parameter of free water intake (FWI), with a partial r2 of 0.57, likely due to the large variability of DM in the first dataset (from 11.5 to 91.4 g/100 g). This confirmed the compensation between water drunk and ingested with diet when DM changes. The variability of urine volume was explained mainly by the CPf associated with DMI (r.s.d. 5.4 kg/day for an average flow of 24.0 kg/day) and that of fecal water was explained by the proportion of CONC in the diet and DMI. External validation showed that predictive equations excluding DMI as predictive parameters could be used for FWI, urine and fecal water predictions if cows were fed a well-known total mixed ration. It also appeared that TWI and FWI were underestimated when ambient temperature increased above 25°C and possible means of including climatic parameters in future predictive equations were proposed.  相似文献   

11.
Soil is the main matrix which contributes to the transfer of environmental pollutants to animals and consequently into the food chain. In the French West Indies, chlordecone, a very persistent organochlorine pesticide, has been widely used on banana growing areas and this process has resulted in a long-term pollution of the corresponding soils. Domestic outside-reared herbivores are exposed to involuntary soil intake, and tethered grazing commonly used in West Indian systems can potentially favour their exposure to chlordecone. Thus, it appears necessary to quantify to what extent grazing conditions will influence soil intake. This experiment consisted of a cross-over design with two daily herbage allowance (DHA) grazed alternatively. Six young Creole bulls were distributed into two groups (G1 and G2) according to their BW. The animals were individually tethered and grazed on a restrictive (RES) or non-restrictive (NRES) levels of DHA during two successive 10-days periods. Each bull progressed on a new circular area every day. The two contrasting levels of DHA (P<0.001) were obtained via a different daily grazing surface area (RES: 20 m2/animal, NRES: 31 m2/animal; P<0.01) offered to the animals by the modulation of the length of the tethering chain (RES: 1.9 m, NRES: 2.6 m). These differences in offered grazing areas resulted in DHA of 71 and 128 g DM/kg BW0.75, respectively for RES and NRES treatments. As expected, the animals grazing on the reduced area realized a lower daily dry matter intake (DMI) (RES: 1.12 kg/100 kg BW, NRES: 1.83 kg/100 kg BW; P<0.05) and present a lower organic matter digestibility (RES: 0.67, NRES: 0.73; P<0.01) than NRES ones, due in part to the shorter post-grazing sward surface height (RES: 3.3 cm, NRES: 5.2 cm; P<0.01) of their grazing circles. Soil intake was estimated on an individual level based on the ratio of the marker titanium in soil, herbage and faeces. Grazing closer to the ground, animals on RES treatment ingested a significantly higher proportion of soil in their total DMI (RES: 9.3%, NRES: 4.4%; P<0.01). The amount of ingested soil in the diet was not significantly different between the two treatments (RES: 98 g/100 kg BW, NRES: 78 g/100 kg BW; P>0.05) due to the lower DMI of RES compared with NRES treatment.  相似文献   

12.
This study examined the relationship of residual feed intake (RFI) with digestion, body composition, carcass traits and visceral organ weights in beef bulls offered a high concentrate diet. Individual dry matter (DM) intake (DMI) and growth were measured in a total of 67 Simmental bulls (mean initial BW 431 kg (s.d.=63.7)) over 3 years. Bulls were offered concentrates (860 g/kg rolled barley, 60 g/kg soya bean meal, 60 g/kg molasses and 20 g/kg minerals per vitamins) ad libitum plus 0.8 kg grass silage DM daily for 105 days pre-slaughter. Ultrasonic muscle and fat depth, body condition score (BCS), muscularity score, skeletal measurements, blood metabolites, rumen fermentation and total tract digestibility (indigestible marker) were determined. After slaughter, carcasses and perinephric and retroperitoneal fat were weighed, carcasses were graded for conformation and fat score and weight of non-carcass organs, liver, heart, kidneys, lungs, gall bladder, spleen, reticulo-rumen full and empty and intestines full, were determined. The residuals of the regression of DMI on average daily gain (ADG), mid-test metabolic BW (BW0.75) and the fixed effect of year, using all animals, were used to compute individual RFI coefficients. Animals were ranked on RFI and assigned to high (inefficient), medium or low groupings. Overall mean ADG and daily DMI were 1.6 kg (s.d.=0.36) and 9.4 kg (s.d.=1.16), respectively. High RFI bulls consumed 7 and 14% more DM than medium and low RFI bulls, respectively (P<0.001). No differences between high and low RFI bulls were detected (P>0.05) for ADG, BW, BCS, skeletal measurements, muscularity scores, ultrasonic measurements, carcass weight, perinephric and retroperitoneal fat weight, kill-out proportion and carcass conformation and fat score. However, regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a decrease in kill-out proportion of 20 g/kg (P<0.05) and a decrease in carcass conformation of 0.74 units (P<0.05). Weight of non-carcass organs did not differ (P>0.05) between RFI groups except for the empty weight of reticulo-rumen, which was 8% lighter (P=0.05) in low RFI compared with high RFI bulls. Regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a 1 kg increase in reticulo-rumen empty weight (P<0.05). Of the visceral organs measured, the reticulo-rumen may be a biologically significant contributory factor to variation in RFI in beef bulls finished on a high concentrate diet.  相似文献   

13.
The aim of the study was to evaluate the effects of low to moderate oral exposure to the Fusarium toxin deoxynivalenol (DON; derived from culture material) on performance, water intake, and carcass parameters of broilers during early and late developmental phases. A total of 160 Ross 308 broilers were randomly allocated to four different feeding groups (n = 40/group) including 0 (control), 2.5, 5, and 10 mg DON/kg wheat-soybean meal-based feed. Three consecutive replicates of the experiment were performed. Half of the broilers were slaughtered in week 3 of the trial whereas the other half were slaughtered in week 5. Dry matter intake (DMI) and water intake (WI) were recorded on a daily basis and the body weight (BW) and BW gain (BWG) were determined weekly. The following carcass traits were recorded and calculated in absolute and relative data: dressed carcass weight, breast muscle weight, leg weight, and liver weight. Data showed that BW (P < 0.001), BWG (P = 0.005), and DMI (P < 0.001) were reduced by DON-feeding during the entire feeding period. The ratio of DMI to body weight gain (DMI/BWG) was not affected by the treatment. However, the ratio of water to DMI (WI/DMI) increased in DON-treated birds (P = 0.021). Contrast analysis showed that DON tendentially reduced slaughter weight (P = 0.082) and decreased leg yield (P = 0.037) in DON-fed chickens in week 5 of the experiment. Liver organ weight decreased in the 3-week-old DON-fed broilers compared to that in the control-fed birds (P = 0.037). In conclusion, the study suggests that DMI and BW were negatively affected under the experimental conditions at DON levels lower than the current guidance value in the European Union of 5 mg/kg feed. The study also indicates that broilers fed on low to moderate level DON-contaminated diets showed increased WI/DMI ratio which might have negative influence on wet litter syndrome.  相似文献   

14.
Low-cost feeding-behavior sensors will soon be available for commercial use in dairy farms. The aim of this study was to develop a feed intake model for the individual dairy cow that includes feeding behavior. In a research farm, the individual cows’ voluntary feed intake and feeding behavior were monitored at every meal. A feed intake model was developed based on data that exist in commercial modern farms: ‘BW,’ ‘milk yield’ and ‘days in milking’ parameters were applied in this study. At the individual cow level, eating velocity seemed to be correlated with feed intake (R2=0.93 to 0.94). The eating velocity coefficient varied among individuals, ranging from 150 to 230 g/min per cow. The contribution of feeding behavior (0.28) to the dry matter intake (DMI) model was higher than the contribution of BW (0.20), similar to the contribution of fat-corrected milk (FCM)/BW (0.29) and not as large as the contribution of FCM (0.49). Incorporating feeding behavior into the DMI model improved its accuracy by 1.3 (38%) kg/cow per day. The model is ready to be implemented in commercial farms as soon as companies introduce low-cost feeding-behavior sensors on commercial level.  相似文献   

15.
The milk production, energy balance (EB), endocrine and metabolite profiles of 10 New Zealand Holstein Friesian (NZ) cows and 10 North American Holstein Friesian (NA) cows were compared. The NA cows had greater peak milk yields and total lactation milk yields (7387 v. 6208 kg; s.e.d. = 359), lower milk fat and similar protein concentrations compared with the NZ cows. Body weight (BW) was greater for NA cows compared with NZ cows throughout lactation (596 v. 544 kg; s.e.d. = 15.5), while body condition score (BCS) tended to be lower. The NA strain tended to have greater dry matter intake (DMI) (17.2 v. 15.7 kg/day; s.e.d. = 0.78) for week 1 to 20 of lactation, though DMI as a proportion of metabolic BW was similar for both strains. No differences were observed between the strains in the timing and magnitude of the EB nadir, interval to neutral EB, or mean daily EB for week 1 to 20 of lactation. Plasma concentrations of glucose and insulin were greater for NA cows during the transition period (day 14 pre partum to day 28 post partum). Plasma IGF-I concentrations were similar for the strains at this time, but NZ cows had greater plasma IGF-I concentration from day 29 to day 100 of lactation, despite similar calculated EB. In conclusion, the results of this study do not support the premise that the NZ strain has a more favourable metabolic status during the transition period. The results, however, indicate that NZ cows begin to partition nutrients towards body reserves during mid-lactation, whereas NA cows continue to partition nutrients to milk production.  相似文献   

16.
Shortening the dry period (DP) has been proposed as a strategy to improve energy balance (EB) in cows in early lactation. This study evaluated the effects of shortening the DP on milk yield (MY), EB and residual feed intake (RFI) in two breeds; Swedish Red (SR) and Swedish Holstein (SH). Cows were blocked by breed and parity and then randomly assigned to one of two treatments; short DP of 4 weeks (4W, n=43) or conventional DP of 8 weeks (8W, n=34). Cows were kept and fed under the same conditions, except for the 4 weeks when the 4W group were still lactating prepartum and thus kept with the lactating cows. Milk yield and BW were recorded and body condition score (BCS) was rated from 10 weeks prepartum to 12 weeks postpartum. Dry matter intake (DMI) was recorded for lactating cows postpartum. Milk yield was reduced by 6.75 kg/day during the first 12 weeks postpartum (P<0.001) for the 4W cows compared with 8W cows, but there was no significant difference in total MY (3724 kg compared with 3684 kg, P=0.7) when the milk produced prepartum was included. Protein content was higher in 4W cows (3.42%) than in 8W cows (3.27%) (P<0.001) postpartum. In the 8W group, cows lost more BCS after calving (P<0.05). Cows of SR breed had higher BCS than cows of SH breed (SR=3.7, SH=3.2, P<0.001), but no differences in BW were found between breed and treatment. Energy balance was improved for cows in the 4W group (P<0.001), while feed efficiency, expressed as RFI, was reduced for 4W cows than for 8W cows (5.91 compared with −5.39, P<0.01). Shortening the DP resulted in improved EB postpartum with no difference between the breeds and no milk losses when including the milk produced prepartum.  相似文献   

17.
Current techniques for measuring the dry matter intake (DMI) of grazing lactating beef cows are invasive, time consuming and expensive making them impractical for use on commercial farms. This study was undertaken to explore the potential to develop and validate a model to predict DMI of grazing lactating beef cows, which could be applied in a commercial farm setting, using non-invasive animal measurements. The calibration dataset used to develop the model was comprised of 94 measurements recorded on 106 beef or beef–dairy crossbred cows (maternal origin). The potential of body measurements, linear type scoring, grazing behaviour and thermal imaging to predict DMI in combination with known biologically plausible adjustment variables and energy sinks was investigated. Multivariable regression models were constructed for each independent variable using SAS PROC REG and contained milk yield, BW, parity, calving day and maternal origin (dairy or beef). Of the 94 variables tested, 32 showed an association with DMI (P < 0.25) upon multivariable analysis. These variables were incorporated into a backwards linear regression model using SAS PROC REG. Variables were retained in this model if P < 0.05. Five variables; width at pins, full body depth, ruminating mastications, central ligament and rump width score, were retained in the model in addition to milk yield, BW, parity, calving day and maternal origin. The inclusion of these variables in the model increased the predictability of DMI by 0.23 (R2 = 0.68) when compared to a model containing milk yield, BW, parity, calving day and maternal origin only. This model was applied to data recorded on an independent dataset; a herd of 60 lactating beef cows two years after the calibration study. The R2 for the validation was 0.59. Estimates of DMI are required for measuring feed efficiency. While acknowledging challenges in applicability, the findings suggest a model such as that developed in this study may be used as a tool to more easily and less invasively estimate DMI on large populations of commercial beef cows, and therefore measure feed efficiency.  相似文献   

18.
Milk fatty acid (FA) profile has been previously used as a predictor of enteric CH4output in dairy cows fed diets supplemented with plant oils, which can potentially impact ruminal fermentation. The objective of this study was to investigate the relationships between milk FA and enteric CH4 emissions in lactating dairy cows fed different types of forages in the context of commonly fed diets. A total of 81 observations from three separate 3×3 Latin square design (32-day periods) experiments including a total of 27 lactating cows (96±27 days in milk; mean±SD) were used. Dietary forages were included at 60% of ration dry matter and were as follows: (1) 100% corn silage, (2) 100% alfalfa silage, (3) 100% barley silage, (4) 100% timothy silage, (5) 50 : 50 mix of corn and alfalfa silages, (6) 50 : 50 mix of barley and corn silages and (7) 50 : 50 mix of timothy and alfalfa silages. Enteric CH4output was measured using respiration chambers during 3 consecutive days. Milk was sampled during the last 7 days of each period and analyzed for components and FA profile. Test variables included dry matter intake (DMI; kg/day), NDF (%), ether extract (%), milk yield (kg/day), milk components (%) and individual milk FA (% of total FA). Candidate multivariate models were obtained using the Least Absolute Shrinkage and Selection Operator and Least-Angle Regression methods based on the Schwarz Bayesian Criterion. Data were then fitted into a random regression using the MIXED procedure including the random effects of cow, period and study. A positive correlation was observed between CH4 and DMI (r=0.59,P<0.001), whereas negative associations were observed between CH4 and cis9-17:1 (r=−0.58, P<0.001), and trans8, cis13-18:2 (r=−0.51,P<0.001). Three different candidate models were selected and the best fit candidate model predicted CH4 with a coefficient of determination of 0.84 after correction for cow, period and study effects and was: CH4 (g/day)=319.7−57.4×15:0−13.8×cis9-17:1−39.5×trans10-18:1−59.9×cis11-18:1−253.1×trans8, cis12-18:2−642.7×trans8, cis13-18:2−195.7×trans11, cis15-18:2+16.5×DMI. Overall and linear prediction biases of all models were not significant (P>0.19). Milk FA profile and DMI can be used to predict CH4emissions in dairy cows across a wide range of dietary forage sources  相似文献   

19.
The majority of lambs in the United States are born from late winter to early spring and pregnant ewes are generally sheared in the last third of pregnancy. Although there are benefits to shearing before parturition, shorn animals may be more vulnerable to the cold, highly variable climatic conditions associated with these seasons. The objective of this study was to determine if late gestation shearing induces differences in individual BW, dry matter intake (DMI) and plasma metabolite concentration of finewool ewes managed outdoors during winter. Thirty-six mature, pregnant Rambouillet ewes (3.8±0.45 years; 76.8±11.4 kg) were managed in a drylot with ad libitum access to pelleted alfalfa in bunks capable of measuring individual daily DMI. The treatment group consisted of ewes sheared at ~5 weeks before the estimated parturition date (shorn; n=18). Unshorn ewes (n=18) remained in full fleece throughout the experiment and were shorn on the last day of the experiment ~2 weeks before the estimated parturition date. Blood was collected on days 0 (before shearing shorn group), 7, 14 and 21 (before shearing unshorn group) of the trial, and plasma was isolated and analyzed for non-esterified fatty acid (NEFA), β-hydroxybutyrate (BHB) and glucose (GLU) concentrations. There was no effect of shearing on ewe DMI or BW during the trial (P⩾0.35). Plasma NEFA and GLU concentrations were similar (P⩾0.36) between shearing groups, though plasma BHB concentration was 103.7 μmol/l greater (24.1%; P<0.01) in unshorn ewes. Lamb BW at birth was not affected (P=0.30) by ewe shearing treatment. Under conditions of this study, no differences in economically important aspects of sheep production were observed between shorn and unshorn pregnant ewes.  相似文献   

20.
The main limitation for determining feed efficiency of freely grazing ruminants is measurement of daily individual feed intake. This paper describes an investigation that assessed a method for estimating intake of forage based on changes in BW of ewes. A total of 24 dry and non-pregnant Romane ewes (12 hoggets, HOG; mean±SD 51.8±2.8 kg BW; body condition score (BCS) 2.6±0.2; and 12 adults, ADU; 60.4±8.5 kg BW; BCS 2.7±0.8) were selected for the study and moved from their rangeland system to a confined pen with controlled conditions and equipped with individual automatic feeders. The experiment lasted for 28 days (21 days adaptation and 7 days feed intake measurement). Ewes were fed hay and trained to use the electronic feeders (one feeding station per ewe) in which actual daily intake (Hintake24) was measured. The pens were designed to maximize movement of trained ewes through an automated Walk-over-Weighing device, by using water and mineral salts as attractants. Total individual intake of hay measured in the automatic feeder at each meal (Hintake) was compared with indirect estimates of feed intake determined using differences in the BW of the ewes (∆BW) before and 1 h following morning and afternoon feeding at fixed times. The BW, BCS, Hintake, Hintake24, as well as plasma non-esterified fatty acids (NEFA), glucose and insulin profiles were determined. The BW was higher in ADU v. HOG but BCS was not affected by parity. The Hintake24 was affected by day of experiment as a consequence of reduced availability and intake of water on one day. Plasma glucose, NEFA and insulin were not affected by parity or day of experiment. The HIntake was and ∆BW tended to be higher in the morning in HOG, whereas Hintake was and ∆BW tended to be higher in ADU at the afternoon meal. Irrespective of parity or feeding time, there was very strong correlation (r2=0.93) between Hintake and ∆BW. This relationship confirms that our indirect method of estimating individual forage intake was reliable within the strictly controlled conditions of the present experiment. The method appears suitable for use in short-term intensive group feeding situations, and has potential to be further developed for longer-term forage intake studies, with a view to developing a method for freely grazing ruminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号