首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Rapid progress in knowledge of the organization of the dog genome has facilitated the identification of the mutations responsible for numerous monogenic diseases, which usually present a breed-specific distribution. The majority of these diseases have clinical and molecular counterparts in humans. The affected dogs have thus become valuable models for preclinical studies of gene therapy for problems such as eye diseases, immunodeficiency, lysosomal storage diseases, hemophilia, and muscular dystrophy. Successful gene therapies in dogs have significantly contributed to decisions to run clinical trials for several human diseases, such as Leber’s congenital amaurosis 2—LCA2 (caused by a mutation of RPE65), X-linked retinitis pigmentosa—XLRP (caused by mutation RPGR), and achromatopsia (caused by mutation of CNGB3). Promising results were also obtained for canine as follows: hemophilia (A and B), mucopolysaccharidoses (MPS I, MPS IIIB, MPS VII), leukocyte adhesion deficiency (CLAD), and muscular dystrophy (a counterpart of human Duchenne dystrophy). Present knowledge on molecular background of canine monogenic diseases and their successful gene therapies prove that dogs have an important contribution to preclinical studies.

  相似文献   

2.
The dog genome map and its use in mammalian comparative genomics   总被引:4,自引:0,他引:4  
The dog genome organization was extensively studied in the last ten years. The most important achievements are the well-developed marker genome maps, including over 3200 marker loci, and a survey of the DNA genome sequence. This knowledge, along with the most advanced map of the human genome, turned out to be very useful in comparative genomic studies. On the one hand, it has promoted the development of marker genome maps of other species of the family Canidae (red fox, arctic fox, Chinese raccoon dog) as well as studies on the evolution of their karyotype. But the most important approach is the comparative analysis of human and canine hereditary diseases. At present, causative gene mutations are known for 30 canine hereditary diseases. A majority of them have human counterparts with similar clinical and molecular features. Studies on identification of genes having a major impact on some multifactorial diseases (hip dysplasia, epilepsy) and cancers (multifocal renal cystadenocarcinoma and nodular dermatofibrosis) are advanced. Very promising are the results of gene therapy for certain canine monogenic diseases (haemophilia, hereditary retinal dystrophy, mucopolysaccharidosis), which have human equivalents. The above-mentioned examples prove a very important model role of the dog in studies of human genetic diseases. On the other hand, the identification of gene mutations responsible for hereditary diseases has a substantial impact on breeding strategy in the dog.  相似文献   

3.
Ion channels-related diseases   总被引:4,自引:0,他引:4  
There are many diseases related to ion channels. Mutations in muscle voltage-gated sodium, potassium, calcium and chloride channels, and acetylcholine-gated channel may lead to such physiological disorders as hyper- and hypokalemic periodic paralysis, myotonias, long QT syndrome, Brugada syndrome, malignant hyperthermia and myasthenia. Neuronal disorders, e.g., epilepsy, episodic ataxia, familial hemiplegic migraine, Lambert-Eaton myasthenic syndrome, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia may result from dysfunction of voltage-gated sodium, potassium and calcium channels, or acetylcholine- and glycine-gated channels. Some kidney disorders, e.g., Bartter's syndrome, policystic kidney disease and Dent's disease, secretion disorders, e.g., hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, vision disorders, e.g., congenital stationary night blindness and total colour-blindness may also be linked to mutations in ion channels.  相似文献   

4.
Cone-rod dystrophy (CRD) is a form of inherited retinal degeneration (RD) causing blindness in man as well as in several breeds of dog. Previously, a 44 bp insertion in RPGRIP1 (retinitis pigmentosa GTPase regulator interacting protein-1) was associated with a recessive early-onset CRD (cone-rod dystrophy 1, cord1) in a Miniature longhaired dachshund (MLHD) research colony. Yet in the MLHD pet population, extensive range of the onset age has been observed among RD cases, with some RPGRIP1(-/-) dogs lacking obvious clinical signs. Phenotypic variation has been known in human homologous diseases, including retinitis pigmentosa and Leber congenital amaurosis, indicating possible involvement of modifiers. To explore additional genetic loci associated with the phenotypic variation observed in MLHDs, a genome-wide association study was carried out using Canine SNP20 arrays in 83 RPGRIP1(-/-) MLHDs with variable ages of onset or no clinical abnormality. Using these samples, comparison of 31 early-onset RD cases against 49 controls (15 late-onset RD and 34 normal dogs combined) identified a strong association (P = 5.05 × 10(-13)) at a single locus on canine chromosome 15. At this locus, the majority of early-onset RD cases but few of the controls were homozygous for a 1.49 Mb interval containing ~11 genes. We conclude that homozygosity at both RPGRIP1 and the newly mapped second locus is necessary to develop early-onset RD, whereas RPGRIP1(-/-) alone leads to late-onset RD or no apparent clinical phenotype. This study establishes a unique model of canine RD requiring homozygous mutations at two distinct genetic loci for the manifestation of early-onset RD.  相似文献   

5.
6.
Progressive retinal atrophies (PRA) are a heterogeneous group of inherited eye diseases common to both dogs and man. Over 100 individual canine breeds display some sort of retinal degeneration, making the dog an extremely valuable resource both for finding the genetic determinants of inherited blindness and for developing naturally occurring animal models that mimic human disease. Progressive retinal atrophies within the English mastiff displayed an ambiguous mode of inheritance. By conducting outcross matings between affected English mastiffs and normal animals from other breeds, the mode of inheritance was confirmed as dominant. This directed candidate gene analysis and led to identification of two synonymous mutations and one nonsynonymous mutation within the canine rhodopsin gene. The nonsynonymous mutation (T4R) is the cause of PRA in the English mastiff, and a test was developed to investigate its presence in 17 additional breeds. Testing of PRA-affected animals from 16 breeds revealed that none carry the T4R mutation, indicating a different cause of PRA. Analysis of two affected bull mastiffs revealed one heterozygote (+/T4R) and one homozygous normal individual (+/+). These findings suggest that the genetic origin of PRA is often breed specific and underline the value of outcross mating to circumvent problems that act to mask the mode of inheritance.  相似文献   

7.
Domestic dogs share a wide range of important disease conditions with humans, including cancers, diabetes and epilepsy. Many of these conditions have similar or identical underlying pathologies to their human counterparts and thus dogs represent physiologically relevant natural models of human disorders. Comparative genomic approaches whereby disease genes can be identified in dog diseases and then mapped onto the human genome are now recognized as a valid method and are increasing in popularity. The majority of dog breeds have been created over the past few hundred years and, as a consequence, the dog genome is characterized by extensive linkage disequilibrium (LD), extending usually from hundreds of kilobases to several megabases within a breed, rather than tens of kilobases observed in the human genome. Genome‐wide canine SNP arrays have been developed, and increasing success of using these arrays to map disease loci in dogs is emerging. No equivalent of the human HapMap currently exists for different canine breeds, and the LD structure for such breeds is far less understood than for humans. This study is a dedicated large‐scale assessment of the functionalities (LD and SNP tagging performance) of canine genome‐wide SNP arrays in multiple domestic dog breeds. We have used genotype data from 18 breeds as well as wolves and coyotes genotyped by the Illumina 22K canine SNP array and Affymetrix 50K canine SNP array. As expected, high tagging performance was observed with most of the breeds using both Illumina and Affymetrix arrays when multi‐marker tagging was applied. In contrast, however, large differences in population structure, LD coverage and pairwise tagging performance were found between breeds, suggesting that study designs should be carefully assessed for individual breeds before undertaking genome‐wide association studies (GWAS).  相似文献   

8.
More than 350 inherited diseases have been reported in dogs and at least 50% of them have human counterparts. To remove the diseases from dog breeds and to identify canine models for human diseases, it is necessary to find the mutations underlying them. To this end, two methods have been used: the functional candidate gene approach and linkage analysis. Here we present an evaluation of these in canine retinal diseases, which have been the subject of a large number of molecular genetic studies, and we show the contrasting outcomes of these approaches when dealing with genetically heterogeneous diseases. The candidate gene approach has led to 377 published results with 23 genes. Most of the results (66.6%) excluded the presence of a mutation in a gene or its coding region, while only 3.4% of the results identified the mutation causing the disease. On the other hand, five linkage analysis studies have been done on retinal diseases, resulting in three identified mutations and two mapped disease loci. Mapping studies have relied on dog research colonies. If this favorable application of linkage analysis can be extended to dogs in the pet population, success in identifying canine mutations could increase, with advantages to veterinary and human medicine.  相似文献   

9.
《Genomics》2022,114(4):110389
Disorders of sex development (DSDs) are congenital malformations defined as discrepancies between sex chromosomes and phenotypical sex. Testicular or ovotesticular XX DSDs are frequently observed in female dogs, while monogenic XY DSDs are less frequent. Here, we applied whole genome sequencing (WGS) to search for causative mutations in XX DSD females in French Bulldogs (FB) and American Staffordshire Terries (AST) and in XY DSD Yorkshire Terries (YT). The WGS results were validated by Sanger sequencing and ddPCR. It was shown that a missense SNP of the PADI6 gene, is significantly associated with the XX DSD (SRY-negative) phenotype in AST (P = 0.0051) and FB (P = 0.0306). On the contrary, we did not find any associated variant with XY DSD in YTs. Our study suggests that the genetic background of the XX DSD may be more complex and breed-specific.  相似文献   

10.
Dog star rising: the canine genetic system   总被引:6,自引:0,他引:6  
Purebred dogs are providing invaluable information about morphology, behaviour and complex diseases, both of themselves and humans, by supplying tractable populations in which to map genes that control those processes. The diversification of dog breeds has led to the development of breeds enriched for particular genetic disorders, the mapping and cloning of which have been facilitated by the availability of the canine genome map and sequence. These tools have aided our understanding of canine population genetics, linkage disequilibrium and haplotype sharing in the dog, and have informed ongoing efforts of the need to identify quantitative trait loci that are important in complex traits.  相似文献   

11.
The analysis of inherited diseases in the domestic dog (Canis familiaris) provides a resource for the continued use of this species as a model system for human diseases. Many different dog breeds are affected by congenital sensorineural deafness. Since mutations in various genes have already been found causative for sensorineural hearing impairment in humans or mice, 20 of these genes were considered as candidates for deafness in dogs. For each of the candidate genes a canine BAC clone was isolated by screening with heterologous human or murine cDNA probes. The gene-containing BAC clones were physically assigned to the canine genome by FISH and the BAC-derived STS-markers were positioned with the RHDF5000 panel on the canine RH map. The mapping data, which confirm the established conservation of synteny between canine and human chromosomes, provide a resource for further association studies in segregating canine populations and the basis for new insights into this common canine and human disease.  相似文献   

12.

Background  

Several forms of progressive retinal atrophy (PRA) segregate in more than 100 breeds of dog with each PRA segregating in one or a few breeds. This breed specificity may be accounted for by founder effects and genetic drift, which have reduced the genetic heterogeneity of each breed, thereby facilitating the identification of causal mutations. We report here a new form of PRA segregating in the Border Collie breed. The clinical signs, including the loss of night vision and a progressive loss of day vision, resulting in complete blindness, occur at the age of three to four years and may be detected earlier through systematic ocular fundus examination and electroretinography (ERG).  相似文献   

13.
The neuronal ceroid lipofuscinoses (NCL) are a heterogenous group of monogenic autosomal recessive inherited progressive neurodegenerative diseases characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Until today, eight forms of NCL have been classified in humans by clinical criteria, which result from mutations in at least six different genes (TPP1, CLN2, PPT1, CLN5, CLN6, and CLN8). NCL has also been reported in various domestic animal species including cattle, goat, sheep, cat, and certain dog breeds. In this report, the experimental analysis of canine PPT1, CLN5, CLN6, and CLN8 full-length cDNA sequences is described, and the current whole genome sequence assembly was used for gene structure analyses. Characterization of the four canine genes revealed a conserved organization with respect to the human orthologs. In general the gene size in dog is smaller compared to the human sequence due to shorter intron length. Using four individuals of Tibetan terrier with NCL, and a single affected Polish Owczarek Nizinny (PON) dog, we excluded the complete coding region of canine PPT1 and CLN8 and three of four exons of CLN5 and six of seven exons of CLN6 harboring disease-causing mutations.  相似文献   

14.
15.
Glaucoma is an optic neuropathy and one of the leading causes of blindness. Its hereditary forms are classified into primary closed-angle (PCAG), primary open-angle (POAG) and primary congenital glaucoma (PCG). Although many loci have been mapped in human, only a few genes have been identified that are associated with the development of glaucoma and the genetic basis of the disease remains poorly understood. Glaucoma has also been described in many dog breeds, including Dandie Dinmont Terriers (DDT) in which it is a late-onset (>7 years) disease. We designed clinical and genetic studies to better define the clinical features of glaucoma in the DDT and to identify the genetic cause. Clinical diagnosis was based on ophthalmic examinations of the affected dogs and 18 additionally investigated unaffected DDTs. We collected DNA from over 400 DTTs and a genome wide association study was performed in a cohort of 23 affected and 23 controls, followed by a fine mapping, a replication study and candidate gene sequencing. The clinical study suggested that ocular abnormalities including abnormal iridocorneal angles and pectinate ligament dysplasia are common (50% and 72%, respectively) in the breed and the disease resembles human PCAG. The genetic study identified a novel 9.5 Mb locus on canine chromosome 8 including the 1.6 Mb best associated region (p = 1.63×10−10, OR = 32 for homozygosity). Mutation screening in five candidate genes did not reveal any causative variants. This study indicates that although ocular abnormalities are common in DDTs, the genetic risk for glaucoma is conferred by a novel locus on CFA8. The canine locus shares synteny to a region in human chromosome 14q, which harbors several loci associated with POAG and PCG. Our study reveals a new locus for canine glaucoma and ongoing molecular studies will likely help to understand the genetic etiology of the disease.  相似文献   

16.
There is incredible morphological and behavioral diversity among the hundreds of breeds of the domestic dog, CANIS FAMILIARIS. Many of these breeds have come into existence within the last few hundred years. While there are obvious phenotypic differences among breeds, there is marked interbreed genetic homogeneity. Thus, study of canine genetics and genomics is of importance to comparative genomics, evolutionary biology and study of human hereditary diseases. The most recent version of the map of the canine genome is comprised of 3,270 markers mapped to 3,021 unique positions with an average intermarker distance of approximately 1 Mb. The markers include approximately 1,600 microsatellite markers, about 1,000 gene-based markers, and almost 700 bacterial artificial chromosome-end markers. Importantly, integration of radiation hybrid and linkage maps has greatly enhanced the utility of the map. Additionally, mapping the genome has led directly to characterization of microsatellite markers ideal for whole genome linkage scans. Thus, workers are now able to exploit the canine genome for a wide variety of genetic studies. Finally, the decision to sequence the canine genome highlights the dog's evolutionary and physiologic position between the mouse and human and its importance as a model for study of mammalian genetics and human hereditary diseases.  相似文献   

17.
L-type Ca2+ channels in Ca2+ channelopathies   总被引:3,自引:0,他引:3  
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.  相似文献   

18.
X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by impaired night vision, variably involving high myopia, nystagmus, decreased visual acuity, and strabismus. Linkage studies have identified two distinct loci for X-linked CSNB1 and CSNB2 on the short arm of chromosome X. The gene mutated in families displaying the "incomplete phenotype" of CSNB (i.e., CSNB2) has recently been identified. To identify novel candidate genes for the "complete form" of CSNB (i.e., CSNB1) we screened the physically vast region Xp11.3-Xp11.4 for cDNA sequences. This led us to identify and map the G protein coupled receptor (GPCR) gene GPR34 to Xp11.4 within 650 kb of the marker DXS993. Deletion screening via Southern blotting and direct sequencing of GPR34 revealed no mutations in 19 unrelated men with CSNB1, excluding a causal role in the disease. However, because of its expression in retinal and neural tissue and the involvement of GPCRs in transmembrane signal transduction, GPR34 remains a putative candidate gene for a number of ocular diseases which also map to the Xp11.4 region.  相似文献   

19.
ABSTRACT: BACKGROUND: An inherited basis for congenital extrahepatic portosystemic shunts (EHPSS) has been demonstrated in several small dog breeds. If in general both portocaval and porto-azygous shunts occur in breeds predisposed to portosystemic shunts then this could indicate a common genetic background. This study was performed to determine the distribution of extrahepatic portocaval and porto-azygous shunts in purebred dog populations. RESULTS: Data of 135 client owned dogs diagnosed with EHPSS at the Faculty of Veterinary Medicine of Utrecht University from 2001 - 2010 were retrospectively analyzed. The correlation between shunt localization, sex, age, dog size and breed were studied. The study group consisted of 54 males and 81 females from 24 breeds. Twenty-five percent of dogs had porto-azygous shunts and 75 % had portocaval shunts. Of the dogs with porto-azygous shunts only 27 % was male (P = 0.006). No significant sex difference was detected in dogs with a portocaval shunt. Both phenotypes were present in almost all breeds represented with more than six cases. Small dogs are mostly diagnosed with portocaval shunts (79 %) whereas both types are detected. The age at diagnosis in dogs with porto-azygous shunts was significantly higher than that of dogs with portocaval shunts (P < 0.001). CONCLUSION: The remarkable similarity of phenotypic variation in many dog breeds may indicate common underlying genes responsible for EHPSS across breeds. The subtype of EHPSS could be determined by a minor genetic component or modulating factors during embryonic development.  相似文献   

20.
Leader of the pack: gene mapping in dogs and other model organisms   总被引:1,自引:0,他引:1  
The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. We share many diseases with our canine companions, including cancer, diabetes and epilepsy, making the dog an ideal model organism for comparative disease genetics. Using newly developed resources, whole-genome association in dog breeds is proving to be exceptionally powerful. Here, we review the different trait-mapping strategies, some key biological findings emerging from recent studies and the implications for human health. We also discuss the development of similar resources for other vertebrate organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号