首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We conducted this study to determine the diversity patterns, community structures, and seasonality of ground beetle assemblages along an altitudinal gradient (437–1420 m) on Mt. Sobaeksan, Korea. Ground beetles were collected by pitfall traps installed along an altitudinal gradient (437, 757, 1100, and 1420 m). A total of 32 species belonging to seven subfamilies were identified from 3259 collected ground beetles. The diversity pattern of the ground beetle assemblage according to altitude was neither monotonic decreased nor hump-shaped. However, subfamily assemblages and wing form diversity patterns differed according to altitude and may be correlated with altitude or some other environmental variables. The dominant species were Synuchus cycloderus (29.4%) and Eucarabus sternbergi sobaeksanensis (15.4%) and their seasonal activities according to altitude were similar. According to non-metric multidimensional scaling, ground beetles and altitudes could be divided into two distinct groups: a low altitude group (437–757 m) and a high altitude group (1100–1420 m). Some species were particularly abundant at high altitudes, such as Aulonocarabus koreanus kwonileeique and Poecilus nitidicollis, while others were highly abundant at low altitudes, such as Pterostichus audax, Pterostichus ishikawai, and Synuchus species.  相似文献   

2.
《Journal of Asia》2014,17(2):161-167
Two diversity patterns (hump-shaped and monotonic decrease) frequently occur along altitude or latitude gradients. We examined whether patterns of ant species richness along altitudes in South Korea can be described by these patterns and whether ranges of ant species follow Rapoport's altitudinal rule. Ants on 12 high mountains (> 1100 m) throughout South Korea (from 33° N to 38° N) were surveyed using pitfall traps at intervals of 200–300 m altitude. The temperatures at the sampling sites were determined from digital climate maps. Ant species richness decreased monotonically along the altitudinal gradient and increased along the temperature gradient. However, species richness of cold-adapted species (highland species) showed a hump-shaped pattern along altitude and temperature gradients. The altitude and temperature ranges of ant species followed Rapoport's rule. Sampling site temperature ranges were significantly correlated with coldness. Therefore, Rapoport's rule can be explained by high cold-tolerance of species inhabiting high altitudes or latitudes.  相似文献   

3.
The study was carried out in the Pinus roxburghii Sargent (Chir pine) forest in the sub-tropical region of Garhwal Himalaya to assess the effect of fire on soil nutrient status at different altitudes (700 m, 800 m and 1000 m), soil depths (0–20 cm, 20–40 cm and 40–60 cm) and on under storey vegetation. The soil nutrients and under storey vegetation were assessed before fire (pre-fire) and after fire (post-fire). The results of the study indicate that fire plays an important role in soil nutrient status and under storey vegetation. The nutrients (soil organic carbon, nitrogen, phosphorus and potassium), decreased in post-fire assessment and with increasing altitudes, and soil depths, compared to pre-fire assessment. The under storey vegetation diminished after fire in all forest sites. The study concludes that in Chir pine forest, fire plays a role in reducing soil nutrients along the altitudinal gradient, soil depths and under storey vegetation. Thus, these nutrients can be saved through some management practices e.g. by early controlled burning and by educating local villagers about the negative impacts of severe wild fires on soil and vegetation.  相似文献   

4.
Mountain plants may respond to warming climates by migrating along altitudinal gradients or, because climatic conditions on mountain slopes can be locally very heterogeneous, by migrating to different microhabitats at the same altitude. However, in new environments, plants may also encounter novel soil microbial communities, which might affect their establishment success. Thus, biotic interactions could be a key factor in plant responses to climate change. Here, we investigated the role of plant–soil feedback for the establishment success of the alpine dwarf shrub Salix herbacea L. across altitudes and late- and early snowmelt microhabitats. We collected S. herbacea seeds and soil from nine plots on three mountain-slope transects near Davos, Switzerland, and we transplanted seeds and seedlings to substrate inoculated with soil from the same plot or with soils from different microhabitats, altitudes and mountains under greenhouse conditions. We found that, on average, seeds from higher altitudes (2400–2700 m) and late-exposed snowbeds germinated better than seeds from lower altitudes (2200–2300 m) and early-exposed ridges. However, despite these differences in germination, growth was generally higher for plants from low altitudes, and there were no indications for a an home-soil advantage within the current range of S. herbacea. Interestingly, seedlings growing on soil from above the current altitudinal distribution of S. herbacea grew on average less well than on their own soil. Thus, although the lack of a home-soil advantage in the current habitat might be beneficial for S. herbacea in a changing environment, migration to habitats beyond the current altitudinal range might be limited, probably due to missing positive soil-feedback.  相似文献   

5.
In this study we investigated the variations in soil seed banks along an altitudinal gradient in the Alborz mountains, Iran, covering three habitats from lower to upper altitudes: forest, forest-subalpine grassland ecotone and subalpine meadow. In each habitat from 1850 to 2400 m, 20 quadrats were established along four transects, and the above-ground vegetation and the germinable seed banks were determined. Results show that the similarity between seed bank and vegetation was lowest in the ecotone located at intermediate altitudes. Together with the contrasting highest density and species diversity of seeds at these altitudes, the ecotonal role of this habitat was confirmed.We found evidence that lower altitudes could act as storage for seeds of some species growing at higher altitudes; the role of the ecotone was more prominent as a reserve for the meadow plant seeds than the role of the forest as a reserve for seeds of the meadow and ecotone habitats. Soil seed banks, particularly from the ecotone, can be used for restoring vegetation in some degraded sites.  相似文献   

6.
Studies of altitudinal changes in phenotype and genotype can complement studies of latitudinal patterns and provide evidence of natural selection in response to climatic factors. In Drosophila melanogaster, latitudinal variation in phenotype and genotype has been well studied, but altitudinal patterns have rarely been investigated. We studied populations from six different altitudes varying between 35 m and 2173 m in the Firtina Valley in northeastern part of Turkey to evaluate clinal trends in lifespan under experimental conditions. Lifespan in the D. melanogaster populations was examined in relation to altitude, sex, temperature (25 °C and 29 °C), and dietary yeast concentration (5 g/L and 25 g/L). As expected high temperature decrease lifespan in all populations. However, it was shown that lifespan was slightly affected by dietary stress. We found that lifespan decreases significantly under thermal stress conditions with increasing altitude. Moreover, there was a slightly negative relationship between altitude and lifespan, which was closely associated with climatic factors such as temperature and precipitation, may suggest local adaptation to climate.  相似文献   

7.
The main aim of this study is to quantify environmental differences along altitudinal gradients on the basis of different sets of plant indicator systems and recorded vascular plants within 100-m altitudinal bands. Two areas are included in the study, and in total they include an altitudinal span from sea-level up to 2400 m a.s.l. The applied indicator systems are the six values defined by Ellenberg et al. [Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., Paulissen, D., 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18, 1–248], eight Raunkiaer life forms, the respiration values of Dahl [Dahl, E., 1998. The phytography of Northern Europe. Cambridge University Press], and the snow indicator values of Odland and Munkejord [Odland, A., Munkejord, H.K., 2008. Plants as indicators of snow layer duration in southern Norwegian mountains. Ecological Indicators 8, 57–68]. Mean indicator values are calculated for each altitudinal band, and they show significant linear increasing or decreasing trends, significant unimodal (quadratic) trends or no significant altitudinal trend. The altitudinal variation in mean indicator values is discussed in relation to general environmental conditions such as bedrock, soil characteristics, topography, summer temperature, light, snow and distribution of major vegetation types. The main differences between the altitudinal bands as shown by a PCA analysis indicate that the highest bands, representing the high alpine zone (more than 1800 m a.s.l.) strongly differ from the others. The altitudinal gradient is mainly associated with variation in temperature, nitrogen indicators and some of the Raunkiaer life forms (primarily the Phanerophytes, Nanophanerophytes, Geophytes and Therophytes). The two tested temperature indicator systems tested were highly linearly correlated, but the altitudinal variation in respiration value followed the general temperature lapse rate better than the Ellenberg temperature indicator value. Indicators of high soil moisture have their optima at intermediate altitudes. The uppermost bands in Aurland show lower mean temperature indicator values and a higher snow indicator value compared to bands at the same altitude in Jotunheimen. This may partly be explained as a result of the Massenerhebung effect. Relationships between altitudinal distribution patterns of some vascular plants in Aurland and their Ellenberg temperature indicator value indicate that the values should be revised to better suit Norwegian conditions.  相似文献   

8.
Soil respiration is the main form of carbon flux from soil to atmosphere in the global carbon cycle. The effect of temperature on soil respiration rate is important in evaluating the potential feedback of soil organic carbon to global warming. We incubated soils from the alpine meadow zone and upper rocky zone along an altitudinal gradient (4400–5500 m a.s.l.) on the Tibetan Plateau under various temperature and soil moisture conditions. We evaluated the potential effects of temperature and soil moisture on soil respiration and its variation across altitudes. Soil respiration rates increased as the temperature increased. At 60% of soil water content, they averaged 0.21–5.33 μmol g soil−1 day−1 in the alpine meadow zone and 0.11–0.50 μmol g soil−1 day−1 in the rocky zone over the experimental temperature range. Soil respiration rates in the rocky zone did not increase between 25 and 35 °C, probably because of heat stress. Rates of decomposition of organic matter were high in the rocky zone, where the CN ratio was smaller than in the middle altitudes. Soil respiration rates also increased with increasing soil water content from 10% to 80% at 15 °C, averaging 0.04–2.00 μmol g soil−1 day−1 in the alpine meadow zone and 0.03–0.35 μmol g soil−1 day−1 in the rocky zone. Maximum respiration rates were obtained in the middle part of the alpine slope in any case of experimental temperature and soil moisture. The change patterns in soil respiration rate along altitude showed similar change pattern in soil carbon content. Although the altitude is a variable including various environmental factors, it might be used as a surrogate parameter of soil carbon content in alpine zone. Results suggest that temperature, soil moisture and altitude are used as appropriate environmental indicators for estimating the spatial distribution of potential soil respiration in alpine zone.  相似文献   

9.
Crepis capillaris, Hieracium pilosella, and Hypochaeris radicata were investigated for the influence of the altitude of the collection site on the content of phenolics within the flowering heads. These three taxa from the Lactuceae tribe of the Asteraceae family originate from Europe and are now widespread within New Zealand. Flowering heads collected from different altitudes ranging from 180 m to 1060 m (C. capillaris), from 190 to 1290 m (H. pilosella), and from 20 m to 1290 m (H. radicata), respectively, were extracted and analysed by high performance liquid chromatography. Results showed a positive correlation between the altitude of the growing site and the contents of flavonoids and phenolic acids for all investigated taxa. The altitudinal effect was, however, partially concealed by geographic differences between coastal and inland collection sites, with the inland collections containing higher concentrations of flavonoids and phenolic acids than plants collected from the coast. The results are discussed in the light of a putative UV-B protective function of the quantified compounds and of the immigration histories of the three species at hand.  相似文献   

10.
Surveying the diversity of stinging wasps (Hymenoptera: Aculeata) provides an important information base to assist in biodiversity conservation and the management of forest reserves, as wasps depend on and maintain the population balance of several other groups of insects. In accordance, this paper presents an altitudinal survey of wasps (Hymenoptera, Aculeata, Vespidae) in Itatiaia National Park, Brazil, which is a protected area covered by Atlantic Forest in a mountainous landscape, with altitudes ranging between 540 and 2791 metres above sea level. Six altitudinal zones were sampled with entomological net, and the abundance and diversity of the species were indicated by zones. Field sampling took 288 h of discontinuous activity, which was randomly conducted from December 2012 to December 2013. A total of 398 individuals belonging to 29 species and two subfamilies (Eumeninae and Polistinae) were sampled. Eight species are new records for the state of Rio de Janeiro. We found a monotonic decrease in wasp diversity in relation to altitude, and the number of captured individuals differed significantly between the low and high altitudes.  相似文献   

11.
The activity rhythm of a species is ruled by internal signals as well as external factors. Among them, ambient temperature strongly influences the amount, duration, and distribution of an organism's activities throughout the day. The result is a pattern of activity that, between certain limits, can be flexible to deal with seasonal and spatial thermal heterogeneity. The range of behavioral plasticity increases with environmental variability and could be beneficial for a species' persistence under novel conditions. Thus, the goal of this study was to experimentally explore the behavioral plasticity in Phyllotis xanthopygus, a rodent species inhabiting an altitudinal gradient in the Central Andes Mountains of Argentina. In the laboratory, we assessed activity rate and pattern under different temperatures by comparing groups of individuals collected at different altitudes. All animals were acclimated to subsequent thermal treatments in a paired design. As expected, P. xanthophygus showed changes in activity under different temperatures, and animals from diverse altitudes were differently affected. In particular, animals from mid‐altitudes and high altitudes reduced their activity under high temperatures. Intraspecific differences across the altitudinal gradient suggest that animals from mid‐altitudes and high altitudes are less heat tolerant than those from lower sites, in spite of acclimation to equal conditions. We propose that climate ranges experienced in the field possibly promote this different response. Our results are discussed in light of recent forecasts of temperature rises in the region, which could constrain P. xanthophygus activity in space and time.  相似文献   

12.
Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500 m to the mid-alpine region at 900 m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation.  相似文献   

13.
The multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is a well-known biological control agent for aphids and soft-bodied insects. We investigated the developmental, survival and reproductive traits of H. axyridis when its eggs were exposed to 25 (control), 37, 39 and 41 °C for 1 h, and then transferred to ambient condition (25 °C). The effects of heat stress on the hatching success greatly differed among temperature treatments. No H. axyridis larvae hatched out at 41 °C. The development, survival, weight, reproduction and longevity of H. axyridis exhibited significant differences with temperature treatment and gender. The survival rate of immatures declined, while the adult fresh weight of both sexes markedly increased with the increase of temperature. Heat exposure of the eggs caused a subsequent reduction in longevity, oviposition period and reproduction, while the pre-oviposition period became longer as the temperature increased. These may imply that the reproductive investment increased in higher level stressful environments, and the response of adult individuals could be linked to the experiences from early stages of the life history. Our findings provide useful information for predicting population dynamics and understanding the potential for H. axyridis as a biological control agent under variable environments.  相似文献   

14.
A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4 °C) and could tolerate a broader range of body temperatures (8.1–46.8 vs. 9.1–43.1 °C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21 °C to 33 °C, but decreased at 36 °C and 39 °C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout–vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages.  相似文献   

15.
Specimens of the benthic foraminifer Ammonia beccarii were cultured in the laboratory in order to determine the relation between temperature and Mg/Ca and oxygen isotope values in their tests. Asexual reproduction in this species provides a large number of juveniles that were allowed to grow into maturity at temperatures ranging from 10 to 27 °C and at salinities ranging from 18 to 33 PSU. The Mg/Ca in a calcite increase exponentially and δ18O decreases linearly with the temperature. Salinity has no significant impact on either Mg/Ca or δ18O. We show how the combination of these two parameters can be used to reconstruct seawater δ18O and temperature in shallow marine habitats.  相似文献   

16.
Plants growing in infertile environments are able to produce more biomass per unit of nutrient taken up than plants of fertile habitats, and also to minimize nutrients loss by resorbing them from senescing leaves. The leaf nutrient concentration variability of two co-existing riparian tree genera (Populus and Tamarix) along a flood inundation gradient was examined to infer nutrient limitation and to compare nutrient use strategies in the two genera. To that end, seasonal and spatial variability in leaf nitrogen (N) and phosphorus (P) concentration (i.e., % dry mass of N and P) were analyzed in 720 samples of leaves (2 tree genera × 3 seasons × 12 sites × 10 tree replicates). Both Populus and Tamarix showed strong seasonal variability in leaf N and P concentrations, with values decreasing throughout the growing season. However, while N:P atomic ratio remained seasonally constant in Populus (N:P = 33), Tamarix shifted from N:P = 29 in spring to N:P = 36 and 37 in summer and fall. %N, %P and N:P atomic ratios were also spatially variable, but leaf litter N and P concentration (i.e., nutrient resorption proficiency) and leaf litter N:P generally followed the local flood inundation gradient as shown by linear mixed effects models. In particular, nutrient resorption was usually less proficient (higher terminal nutrient concentrations) at higher flood durations (in gravel bars and natural levees), whereas N:P increased in the drier sites (floodplain terrace). At floodplain level, a P-limitation that is higher than N-limitation seems to characterize the plant nutrient circulation in the riparian ecosystem studied. Tamarix was slightly more proficient in P resorption than Populus. The study shows that leaf nutrient concentration (e.g., N and P) derived from nutrient availability is partly controlled by the flood inundation regime and can be used as an indicator of nutrient limitation in forested floodplains. Subtle differences between tree genera provide an additional, novel explanation for the recent expansion of Tamarix in many arid and semi-arid rivers with altered hydrogeomorphic regimes.  相似文献   

17.
Microorganisms are central to both the beneficial (organic degradation, nutrient removal, biogas production) and detrimental (odor production, pathogen contamination) effects of swine waste storage systems. In this study, both quantitative (real-time polymerase chain reaction) and qualitative (denaturing gradient gel electrophoresis, cloning, sequence analysis) molecular analyses were used to track spatial and temporal changes in the microbial community of swine slurry from a 0.4 ha anaerobic lagoon. The lagoon, located in a region of western Kentucky which has a humid, subtropical environment, was sampled on a monthly basis (n = 10) over a period of one year at four different depths (top, 51 cm from the top, 152 cm from the top, and bottom >198 cm). The concentration and diversity of Bacteroides sp. was seasonal (up to 90% decrease between March and June). Hespellia sp. and other clostridial species, on the other hand, were endemic in the slurry (concentrations up to 1.0 × 107 cells mL?1 slurry) regardless of time of the year or lagoon depth. Results suggest that there were seasonal effects on the microbial community in the swine lagoon, while the effect of depth was not as pronounced. Seasonal changes in the microbial community in stored wastes may be (directly or indirectly) correlated with changes in malodor emissions from lagoons.  相似文献   

18.
19.
The climate (especially temperature) often plays an important role in the structure, function as well as composition of soil organisms in different latitudes and altitudes. As one of the essential components of soil ecosystem, soil faunal community not only lays their roles as soil engineer in material cycling and energy flow, but also acts as the sensitive bio-indicator to environmental change. However, little information has been available on the responses of soil faunal community to the changed environment at different altitudes and seasons. In order to understand the seasonal dynamics of soil faunal diversity under different forests with varying altitudes, three fir (Abies faxoniana) forests were selected covering a 600 m vertical transition zone. The primary fir forest at 3600 m (A1) of altitude, mixed fir and birch forest at 3300 m (A2) of altitude, and secondary fir forest at 3000 m (A3) of altitude are representative forests in the subalpine and alpine region of west Sichuan. A 2 years study was conducted in the three subalpine and alpine forests from May in 2009 until October in 2010. Soil samples were collected in both the soil organic layer and mineral soil layer. Soil macro-fauna were picked up by hand in the fields. Meso/micro-fauna and damp living fauna were separated and collected from the soil samples by Baermann and Tullgren methods in laboratory, respectively. A total of 74,827 individuals were collected in the 2 years, belonging to seven phyla, 16 classes, 31 orders and 125 families by preliminary identification. Similar dominant groups were detected in different forests at different altitudes, consisting of Spirostreptida, Formicidae, Staphylinidae, Hesperinidae, Onychiuridae, Isotomidae, Oribatuloidae, Alicoragiidae, Secernentea, and Adenophorea. In contrast, the ordinary species of macro-fauna and the ratios of Acarina to Collembolan were obviously different. For instance, the ordinary species were dominated by Cydmaenidae and Mycetophilidae at the A1, Scaphidiidae and Helicinidae at the A2, and Lumbricida and Agelenidae at the A3, respectively. Both the individual density and the number of soil faunal groups were significantly higher in soil organic layer than those in mineral soil layer. The density and group of macro-, meso- and micro-fauna in different forests showed the order as A2 > A1 > A3, but the density of damp living fauna showed the order as A1 > A2 > A3. The functional groups of macro-fauna were mainly dominated by saprozoic. The highest density and group of macro-fauna was observed in August, while the highest value of meso/micro-fauna was detected in October. In addition, the Jacard similarity indices showed that the composition and structure of soil fauna were similar in the different forests varied with altitudes, but the Shannon–Wiener indices were significantly different. The highest values of Shannon–Wiener indices were observed in October at both the A1 and A3, and in August at the A2. The results suggested that soil faunal community kept a high diversity in the subalpine and alpine forests of west Sichuan, and their structures were significantly affected by the variation of altitudes, which provided important scientific evidences for understanding the ecological processes in the subalpine and alpine coniferous forests.  相似文献   

20.
Boric acid and sodium borates have been considered as being “toxic to reproduction and development”, following results of animal studies with high doses. However unfavorable effects of boron exposure on reproduction and development have not been proved in epidemiological studies so far. The aim of the present study was to investigate the reproductive toxicity indicators in highly exposed workers employed in a boric acid production plant in Band?rma, Turkey. Two hundred and four workers participated in this study. The mean blood boron concentration of the high exposure group of workers was 223.89 ± 69.49 (152.82–454.02) ng/g. Unfavorable effects of boron exposure on the reproductive toxicity indicators were not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号