首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the “Challenge Hypothesis”. In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period.  相似文献   

2.
The onset of mating in yellow-pine chipmunks (Tamias amoenus) follows emergence from a prolonged period of energy conservation during hibernation. Energy expenditures are greatly accelerated to meet the demands of the reproductive season. When emerging from hibernation, typical male chipmunks (breeders) have enlarged testes and a high level of plasma testosterone (T). However, certain males that do not participate in reproduction (nonbreeders) maintain small testes and low plasma T levels and emerge several weeks later than the breeders. The timing of the terminal arousal from hibernation and onset of mating are associated with increased plasma T levels. Experimental elevation of T levels in T. amoenus outside the mating season has been associated with a decrease in body mass, further suggesting an effect of T on energy balance. To test this hypothesis, we measured daily energy expenditure (DEE) in free-living, nonbreeding male chipmunks in the presence and absence of a T-implant. We also measured DEE in breeding males when endogenous T levels were high. DEE of the nonbreeders was not affected by our manipulation of plasma T, and the DEE of breeding males did not differ from that of nonbreeders. We conclude that energy expenditure on a daily basis in male yellow-pine chipmunks is not influenced by levels of T. However, on a seasonal basis, the earlier emergence from hibernation by breeding males, which appears to be influenced by T, represents an overall seasonal energy expenditure that exceeds that of nonbreeding males.  相似文献   

3.
In primate species exhibiting seasonal reproduction, patterns of testosterone excretion in adult males are variable: in some species, peaks correlate with female receptivity periods and heightened male-male aggression over access to estrous females, in others, neither heightened aggression nor marked elevations in testosterone have been noted. In this study, we examined mean fecal testosterone ( f T) levels and intermale aggression in wild adult male ring-tailed lemurs residing in three groups at Beza Mahafaly Reserve, Madagascar. Results obtained from mating and post-mating season 2003 were compared to test Wingfield et al. [1990. Am Nat 136:829-846] "challenge hypothesis", which predicts a strong positive relationship between male testosterone levels and male-male competition for access to receptive females during breeding season. f T levels and rates of intermale aggression were significantly higher during mating season compared to the post-mating period. Mean f T levels and aggression rates were also higher in the first half of the mating season compared with the second half. Number of males in a group affected rates of intermale agonism, but not mean f T levels. The highest-ranking males in two of the groups exhibited higher mean f T levels than did lower-ranking males, and young males exhibited lower f T levels compared to prime-aged and old males. In the post-mating period, mean male f T levels did not differ between groups, nor were there rank or age effects. Thus, although male testosterone levels rose in relation to mating and heightened male-male aggression, f T levels fell to baseline breeding levels shortly after the early mating period, and to baseline non-breeding levels immediately after mating season had ended, offsetting the high cost of maintaining both high testosterone and high levels of male-male aggression in the early breeding period.  相似文献   

4.
Lizards of the genus Anolis extend and retract a large and often brightly colored throat fan called a dewlap. The dewlap in most anoles is a sexually dimorphic structure. It is larger in males than females and males use the dewlap more frequently and in more contexts than do females. In the present study we investigated whether plasma testosterone (T) levels and season affect the frequency of dewlap use in male--male interactions in the brown anole, Anolis sagrei. We manipulated plasma T levels by implanting adult, castrated males with pellets that delivered no T, a moderate dose of T, or a high dose of T. In tests with stimulus males, castrated males that were treated with a moderate or with a high dose of T had a significantly higher frequency of dewlap extensions than did castrated males that received no T. However, the frequency of dewlap extensions in castrated males that received the high dose of T did not differ significantly from castrated males that received the moderate dose of T or from non-castrated control males. Males captured during the breeding season and tested in the laboratory had a significantly higher frequency of dewlap extensions than did males captured in the postbreeding season and tested in the same manner. These results suggest that plasma T levels affect how frequently males of A. sagrei extend their dewlaps in male--male interactions and that seasonal changes in male dewlap use may be due to seasonal differences in plasma T levels.  相似文献   

5.
The aim of this study was to determine if there is a seasonal pattern of reproductive activity in male Payoya goats and if this seasonality can be modulated by a higher level of nutrition. For a period of 16 months, 10 adult bucks were divided into two experimental groups that differed in their feeding level. The high nutrition group (H, n = 5) received 1.6 times their maintenance food requirements. The control nutrition group (C, n = 5) received a diet that supported 1.1 times their maintenance requirements. Body weight and testosterone concentrations were determined weekly, and testicular weight was determined every 2 weeks. Sexual behaviour and semen characteristics were determined monthly. Feeding level did not affect the onset or the end of the reproductive activity as measured by testosterone concentrations, with high testosterone concentrations between July and November. Ejaculation latency was positively influenced by feeding level: 43.2 ± 2.2 s vs. 61.6 ± 3.2 s for H and C group, respectively (P < 0.001). The percentage of males that ejaculated or that were sexually active was higher in the H group (P < 0.01). No differences between feeding levels were observed in the different semen characteristics studied. However, major differences between months were observed for all studied variables. These results lead us to conclude that Payoya bucks exhibit large seasonal variation in their reproductive activity. Higher feeding level allowed a better sexual behaviour in bucks in late spring, when male effect is used on the local livestock to breed females.  相似文献   

6.
Previous research established that in several species of seasonally breeding oscine birds, brain areas [vocal control regions (VCRs)] that control vocal behavior learning and expression exhibit seasonal plasticity, being larger during than outside the reproductive period. In adult males, this seasonal decrease correlates with circulating testosterone (T) concentrations. VCRs contain androgen receptors and T plays an important role in neural plasticity and in the control of singing behavior. In behaviorally dimorphic species, VCRs are larger in males than females and change seasonally also in females, but the dependency of these changes on circulating T levels in females has not been established. In free-living adult dark-eyed juncos (Junco hyemalis), a species in which females do not normally sing, the sizes of three VCRs (high vocal center, robust nucleus of the archistriatum, and Area X) were larger in males than females and decreased between summer and fall in both sexes. In males, this decrease was associated with changes in circulating T concentrations. Females, however, had on average undetectable T levels throughout the breeding season. Seasonal changes in VCR volumes in adult females may depend on very low (below detection limit) circulating T concentrations, on nonandrogenic plasma steroids, on androgen (or androgen metabolites) produced in brain tissues, and/or on nonsteroidal factors such as photoperiod or social interactions with conspecific birds.  相似文献   

7.
Previous laboratory studies have shown that photoperiodic adult songbirds experience seasonal variations in singing frequency that correlate with plasma androgen levels, as well as changes in the brain regions that control singing (vocal control regions). The present study investigates naturally occurring seasonal changes in the sizes of these regions in a wild migratory species (dark-eyed junco, Junco hyemalis), with samples from adolescence to post-breeding fall migration. In adult males, the volumes of the vocal control regions area X and the higher vocal center (HVC) were large during the breeding season when birds were singing and androgen levels were high, and decreased in size after the breeding season when singing had stopped and androgen levels were low. HVC volume in adolescent males caught in the fall (no singing), when plasma androgen levels were low, was smaller than in breeding adults, thereby following the seasonal pattern of change in plasma androgen levels. In adolescent males, however, area X volume was the same as in breeding adults. Thus, area X size in adolescent male juncos may be testosterone independent. The seasonal pattern of robust nucleus of the archistriatum volume was similar to that of the HVC. The volumes of neither the magnocellular nucleus of the anterior neostriatum nor the nucleus rotundus, a control region, differed seasonally. Castration of breeding adult males caused both area X and HVC volumes to decrease compared to castrated controls with testosterone replacement, indicating that maintenance of these two region volumes is testosterone dependent in adults. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 391–402, 1997.  相似文献   

8.
Adult male rhesus monkeys lose weight during the breeding season and regain it during the nonbreeding season. The annual pattern of maximum weight gain just prior to the onset of breeding resembles the seasonal “fattening” seen in squirrel monkeys, but the period of weight gain is less discrete. The magnitude of weight change is less in younger males, in that sexually immature males gain weight in both seasons, but significantly less during the breeding season. Females do not lose weight during the breeding season. Post hoc analyses revealed no significant correlations between male testosterone levels, dominance ranks, weights, or weight changes. The heaviest animals as juveniles were predictably the heaviest as adolescents. The timing of seasonal changes in testosterone did not correlate with the timing of changes in weight; weight losses followed the rise in testosterone, and weight gains continued until early in the breeding season after testosterone levels had already begun to rise. It is suggested that seasonal hormonal changes may influence activities in individuals and that changes in the activities of particular group members may alter the activity patterns of other group members. This alteration of activity patterns due to group influences on individuals as well as individual influences on the group may explain why hormonal regulation of seasonal weight appears to be indirect and why individuals (juveniles) experiencing no seasonal hormonal changes nonetheless show differences in activity patterns and seasonal weight changes.  相似文献   

9.
The social organization of species ranges from solitary-living to complex social groups. While the evolutionary reasons of group-living are well studied, the physiological mechanisms underlying alternative social systems are poorly understood. By studying group-living and solitary individuals of the same species, we can determine hormonal correlates of sociality without the problem of confounding phylogenetic factors. The African striped mouse (Rhabdomys pumilio) is a socially flexible species, which can be solitary or alternatively form complex family groups, depending on population density and the extent of reproductive competition. We predicted group-living striped mice to show signs of reproductive suppression and social stress, resulting in higher corticosterone but lower testosterone levels when compared to solitary-living individuals. To determine whether differences in social organization correlated with hormonal differences, we collected blood samples from free-living striped mice during four breeding seasons when we experimentally induced solitary-living in philopatric individuals by locally reducing population density. Striped mice that were group-living did not change their corticosterone or estosterone levels during the study, indicating that there was no temporal effect during the breeding season. Striped mice of both sexes had significantly lower corticosterone levels after switching from group- to solitary-living. Solitary males – but not solitary females – had higher testosterone levels than group-living conspecifics. Our results suggest that group-living results in physiological stress and can induce reproductive suppression, at least in philopatric males. The switch to solitary-living may thus be a tactic to avoid reproductive competition within groups, and is associated with decreased stress hormone levels and onset of independent reproduction.  相似文献   

10.
Despite significant advances in our knowledge of how testosterone mediates life-history trade-offs, this research has primarily focused on seasonal taxa. We know comparatively little about the relationship between testosterone and life-history stages for non-seasonally breeding species. Here we examine testosterone profiles across the life span of males from three non-seasonally breeding primates: yellow baboons (Papio cynocephalus or P. hamadryas cynocephalus), chacma baboons (Papio ursinus or P. h. ursinus), and geladas (Theropithecus gelada). First, we predict that testosterone profiles will track the reproductive profiles of each taxon across their respective breeding years. Second, we evaluate age-related changes in testosterone to determine whether several life-history transitions are associated with these changes. Subjects include males (> 2.5 years) from wild populations of each taxon from whom we had fecal samples for hormone determination. Although testosterone profiles across taxa were broadly similar, considerable variability was found in the timing of two major changes: (1) the attainment of adult levels of testosterone and (2) the decline in testosterone after the period of maximum production. Attainment of adult testosterone levels was delayed by 1 year in chacmas compared with yellows and geladas. With respect to the decline in testosterone, geladas and chacmas exhibited a significant drop after 3 years of maximum production, while yellows declined so gradually that no significant annual drop was ever detected. For both yellows and chacmas, increases in testosterone production preceded elevations in social dominance rank. We discuss these differences in the context of ecological and behavioral differences exhibited by these taxa.  相似文献   

11.
Both the onset of puberty in the lamb and the annual resumption of reproductive activity in adult male and female sheep are characterized by increased secretion of LH due to reduced responsiveness to steroid inhibition. However, the timing of puberty is sexually differentiated, for males undergo a reduction in sensitivity to steroid feedback at 10 wk of age, whereas females remain highly responsive to steroid inhibition until 30 wk. This sex difference is determined by androgens in utero. The present study was conducted to determine whether a sex difference exists in the timing of seasonal transitions in adult males and females. We compared serum LH in gonadectomized, estradiol-treated males (n = 7), females (n = 6), and androgenized females (n = 5) from blood samples collected twice weekly for one year. As determined by changes in the pattern of LH secretion, the onset and termination of the autumn breeding season were not different between males, females, and androgenized females (termination: 1 February +/- 4 days, mean +/- SE all groups; onset: males, 22 August +/- 4 days; females, 5 September +/- 18 days; androgenized females, 16 September +/- 10.5 days). However, there was a transient increase in LH (20 May to 23 June) in males, but not in females or androgenized females. Although no effects of prenatal testosterone were evident in the control of LH secretion in adult androgenized females, LH secretion in androgenized males was elevated throughout the nonbreeding season in 3 of 5 animals, indicating that exogenous testosterone may reduce seasonal increases in responsiveness to steroid inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Stress and reproduction are generally thought to work in opposition to one another. This is often manifested as reciprocal relationships between glucocorticoid stress hormones and sex steroid hormones. However, seasonal differences in how animals respond to stressors have been described in extreme environments. We tested the hypothesis that garter snakes, Thamnophis sirtalis, with limited reproductive opportunities will suppress their hormonal stress response during the breeding season relative to conspecifics with an extended breeding season. The red-sided garter snake, T.s. parietalis, of Manitoba, Canada, has a brief breeding season during which males displayed no change in either plasma levels of testosterone or corticosterone, which were both elevated above basal levels, in response to capture stress. During the summer, capture stress resulted in increased plasma corticosterone and decreased testosterone. During the fall, when mating can also occur, males exhibited a significant decrease in testosterone but no increase in corticosterone in response to capture stress. The red-spotted garter snake, T.s. concinnus, of western Oregon, has an extended breeding season during which males displayed a stress response of increased plasma corticosterone and decreased testosterone levels. The corticosterone response to capture stress was similar during the spring, summer, and fall. In contrast, the testosterone response was suppressed during the summer and fall when gametogenesis was occurring. These data suggest that male garter snakes, in both populations, seasonally adapt their stress response but for different reasons and by potentially different mechanisms. J. Exp. Zool. 289:99-108, 2001.  相似文献   

13.
Seasonal reproduction is a common characteristic of many small mammals which inhabit seasonal environments in temperate regions, the sub-tropics as well as the tropics. It is important for an animal to reproduce during the most favourable time of the year to ensure the survival of the young and maximize reproductive success. In southern Africa, female spiny mice (Acomys spinosissimus) breed during the warm and wet spring and summer months, whereas the reproductive pattern of males is unknown although an opportunistic breeding pattern has been implicated. We investigated testes mass and volume, seminiferous tubule diameter, spermatogenesis and plasma testosterone concentrations in a South African population of male spiny mice on a 2-monthly basis over one year. Testes mass and volume started to increase in July/August and was high from September until December. Seminiferous tubule diameter and spermatogenesis increased during the same months. Plasma testosterone concentration was elevated from July/August to November/December. Development of the reproductive characteristics of male spiny mice was correlated with high rainfall and high ambient temperatures, but reproductive development had already started during the dry season and the coldest months. This shows that reproductive development in males may not be dependent on climatic conditions, and other factors, such as photoperiod, may trigger the onset of reproduction. The data, however, suggest that A. spinosissimus is a true seasonal breeder with reproduction confined to the spring and summer months in southern Africa.  相似文献   

14.
Developmental changes in the reproductive behavior and physiology of 9 male and 15 female juvenile squirrel monkeys were evaluated in a 20-month study. Plasma levels of gonadal steroids remained relatively low for this species until most animals reached puberty between 2.5 and 3 years of age. Longitudinal assessment of plasma progesterone levels indicated that the onset of ovarian cycles tended to be synchronized between females although the 5 heaviest females began to cycle earlier than the rest. The heavier females reached puberty at a time which was appropriate to their birth in the wild, whereas most of the remaining females conceived 6 months later during a second period of reproductive activity that coincided with the laboratory mating season. Pubescent males underwent their first seasonal elevation in plasma testosterone levels during the second period and its onset was synchronized across all males. Thus, even in the absence of adults, pubertal processes in the squirrel monkey were strongly influenced by the seasonal breeding pattern. In addition, behavioral observations revealed that social maturation closely parallels reproductive ability in females, whereas males enter a protracted subadult stage after puberty.  相似文献   

15.
Monogamous male birds typically allocate less effort to courtship and more to parental behaviour than males of polygynous species. The seasonal pattern of testosterone (T) secretion varies accordingly. Monogamous males exhibit a spring peak in plasma T followed by lower levels during the parental phase, while males of polygynous species continue to court females and maintain T at higher levels. To determine whether testosterone underlies the trade-off between mating and parental effort, we treated male dark-eyed juncos (Junco hyemalis) with exogenous T and compared the reproductive success (RS) of T-treated males (T-males) to that of controls. T-males had lower apparent annual RS than controls, probably because elevated T reduced parental care. Nevertheless, annual genetic RS of the treatment groups was similar because (i) T-males suffered fewer losses in genetic RS due to extra-pair fertilizations (EPFs), and (ii) T-males gained more genetic RS through their own EPFs. This is the first hormonal manipulation of an avian phenotype shown to have influenced male RS through EPFs. Together with other studies, it suggests that testosterone may have mediated the evolution of inter- and intraspecific differences in allocation of reproductive effort to mate attraction and parental care.  相似文献   

16.
褪黑素通过调控下丘脑-垂体-性腺内分泌轴使季节性繁殖动物在适宜的季节进行繁殖活动.大熊猫(Ailuropoda melanoleuca)在春季集中繁殖.为探究雄性大熊猫褪黑素和睾酮的季节性变化规律,本研究选取成都大熊猫繁育研究基地3只成年雄性大熊猫作为实验对象,在自然光照下对这3只大熊猫进行每周1次为期1年(2018年...  相似文献   

17.
布氏田鼠是我国内蒙古草原的主要害鼠之一,具有明显的季节繁殖特征,不同季节出生个体可能具有不同的繁殖策略,但尚缺乏内分泌证据支持。本研究采用标志重捕法,连续监测大型自然围栏中不同年龄雄性布氏田鼠的繁殖状态和应激水平的季节变化,分析各年龄组雄鼠的繁殖发育策略。结果表明,越冬雄鼠可保持较高的睾丸下降率和睾酮水平至8月初;而部分5月生雄鼠的繁殖期睾酮水平较接近越冬鼠,但8月初已降至年内最低水平,而6月及以后出生雄鼠睾酮始终处于较低水平;这说明越冬鼠的繁殖状态可贯穿繁殖期始终,只有部分5月生雄鼠可能参与当年繁殖,而6月及以后出生雄鼠则不能在当年繁殖。越冬鼠皮质醇水平高于当年鼠,繁殖期高于非繁殖期,这可能是越冬鼠由于繁殖需要而保持较高应激状态,从而造成繁殖盛期后死亡率升高。这些结果说明,不同时期出生的雄性布氏田鼠具有不同的出生后性腺发育模式和繁殖策略,反映出生存与繁殖之间的权衡。  相似文献   

18.
The seasonal patterns of two primary plasma androgens, testosterone (T) and dehydroepiandrosterone (DHEA), were assessed in adult male alligators from the Merritt Island National Wildlife Refuge, a unique barrier island environment and home to the Kennedy Space Center in Florida. Samples were collected monthly from 2008 to 2009, with additional samples collected at more random intervals in 2007 and 2010. Plasma T concentrations peaked in April, coincident with breeding and courtship, and declined rapidly throughout the summer. Seasonal plasma T patterns in smaller though reproductively active adult males differed from those in their larger counterparts during the breeding season. Both size classes showed significant increases in plasma T concentration from February to March, at the beginning of the breeding season. However, smaller adults did not experience the peak in plasma T concentrations in April that were observed in larger adults, and their concentrations were significantly lower than those of larger males for the remainder of the breeding season. Plasma DHEA concentrations peaked in May and were significantly reduced by June. This is the first study to demonstrate the presence of DHEA in a crocodilian, and the high plasma DHEA concentrations that paralleled the animals' reproductive activity suggest a reproductive and/or behavioral role in adult male alligators. Similar to androgen variations in some birds, plasma DHEA concentrations in the alligators were considerably higher than T concentrations during the nonbreeding season, suggesting a potential role in maintaining nonbreeding seasonal aggression.  相似文献   

19.
There are no reported data on hormonal fluctuations in black‐handed spider monkey males. On previous research about the reproductive physiology of this monkey we have found that during the dry season females show ovulatory estrogen peaks and males present the best quality semen. As part of an ongoing research, in this study we assessed seasonal variations in the concentration of serum luteinizing hormone (LH) and testosterone (T) in three adult spider monkey males to corroborate the seasonal reproductive synchrony. At the same time sperm count and motility were evaluated to search for any correlation between those sperm parameters and hormonal concentrations. We took blood and semen samples (by electroejaculation) of anesthetized males throughout the rainy (June–September) and dry (October–May) months. Our results revealed that T and LH were higher throughout the dry season and there was a significant correlation between T concentration and sperm count. Although higher during the dry season, sperm motility tended to correlate with testosterone and LH levels. These results demonstrated that black‐handed spider monkeys have a tendency to show a seasonal pattern of reproduction being the dry season the most likely time to achieve fertilization. Am. J. Primatol. 71:427–431, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
JOHN P. DITTAMI 《Ibis》1987,129(1):69-85
The Blue-eared Glossy Starling Lamprotornis chalybaeus and Rüppell's Long-tailed Glossy Starling Lamprotornis purpuropterus were investigated in the field and in aviaries at Lake Nakuru National Park, Kenya for seasonality in reproductive activity and moult. The former species was found to be a seasonal breeder which nests after the onset of the heavy rains in April. Although some birds had large gonads prior to the rains in the dry season no nesting occurred. The rains were contemporary with increases in gonadal size and the plasma titres of LH, testosterone (T) in males and estradiol (E2) in females. These hormones are associated with the initiation of breeding activity. As breeding ceased in July and the moult began, the plasma titres again decreased. There was a bimodal breeding pattern which paralleled a change in biotope preference for nesting. Early nests, in the heavy rains, were on the open savanna and later nests were in the acacia forest. Late nesting birds also had delayed peaks in gonadal size, plasma titres of LH, T and E2 and a delayed moult onset. Data on individual captive birds demonstrate that these annual cycles have a distinctly individual character superimposed on the seasonal trends. In Rüppell's Long-tailed Glossy Starlings no seasonality in breeding was found although the flight feather moult commenced and was completed in all individuals at about the same time. The moult extended over about ten months, so a great deal of breeding-moult overlap was present. The absence of seasonality in field birds was reflected in the aviary birds, which had no pronounced cycles in the reproductive parameters measured (gonadal size, LH, T and E2 plasma titres). Breeding in field birds was regulated on a pair basis and correlated with increases in duetting. The striking differences in the seasonal organization between this species and Blue-eared Glossy Starlings were presumably due to the different biotope preferences and social behaviour of the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号