首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
卫星遥感珊瑚礁白化概述   总被引:1,自引:0,他引:1  
潘艳丽  唐丹玲 《生态学报》2009,29(9):5076-5080
珊瑚礁白化是由于珊瑚失去体内共生的虫黄藻或者共生的虫黄藻失去体内色素而导致五彩缤纷的珊瑚礁变白的现象,严重的白化可以带来珊瑚礁的死亡.国内外研究表明海水温度升高和珊瑚礁白化关系最为紧密.卫星遥感能够提供大范围、同步与连续的海洋数据,如海水表层温度和海色数据,从而能够及时监测和预测珊瑚礁的白化.基于AVHRR (Advanced Very High Resolution Radiometer),NOAA(National Oceanic and Atmospheric Administration,US)开发了全球监测珊瑚礁白化的方法,热点(HotSpot)和周热度(DHW)两种主要指数.目前,我国珊瑚礁白化现象的监测和研究明显滞后于国际动态,迫切需要发展和利用卫星遥感的方法监测南海珊瑚礁白化状况.  相似文献   

2.
Coral reef bleaching is an obvious indication that coastal marine ecosystems are being stressed. However, bleached reefs alone are poor indicators because they reflect the final stages of stress. This research project used multidate satellite imagery to look for coral reef changes as indicators of stress. Findings suggest that (1) satellite imagery can be used to identify small-scale changes in coastal marine ecosystems, including coral reefs; (2) remote sensing, marine ecology, and ethnographic data can be integrated to suggest potential causes of coral reef stress; and (3) changes in reef, seagrass, and mangrove ecozones are more closely tied to fishing, tourism, and land use practices than to global warming.  相似文献   

3.
不同生长状态珊瑚光谱特征   总被引:1,自引:0,他引:1  
陈启东  邓孺孺  秦雁  熊龙海  何颖清 《生态学报》2015,35(10):3394-3402
珊瑚礁生态系统迅速退化是目前重要的生态环境问题之一,应用遥感技术监测大范围珊瑚礁的结构组成和变迁有很大的潜力。珊瑚光谱响应特征受珊瑚生态习性影响,在光学上相似而容易造成混淆误判。采集了西沙群岛大量石珊瑚样品的光谱,对其光谱特征进行分析及成因探讨。通过导数光谱、主成分分析研究了不同生长状态珊瑚的光谱差异,并建立珊瑚生长状态高光谱遥感判别准则。结果表明,珊瑚的光谱特性及其变化均较为复杂,受珊瑚种类和生长环境影响,光谱形状主要由共生藻色素吸收决定的。结合520—530 nm、564—574 nm和600—605 nm的导数光谱可以区分健康珊瑚、白化珊瑚和藻类覆盖的死珊瑚。总体判定准确度优于80%,误判的主要来源是种内珊瑚反射率差异。研究表明珊瑚礁环境高光谱遥感可以定量评估珊瑚状态的变化。  相似文献   

4.
Hyperspectral remote sensing has shown promise for detailed discrimination of coral reef substratum types, but, by necessity, it samples at pixel scales larger than reef substratum patch sizes. Spectral unmixing techniques have been successful in resolving subpixel areal cover in terrestrial environments. However, the application of spectral unmixing on coral reefs is fundamentally challenging, due not only to the water column, but also to the potentially large number of spectrally similar and ecologically significant end-member (substratum) classes involved. A controlled ex-situ experiment was conducted using field-spectrometer data to assess the accuracy of spectral unmixing techniques to estimate the areal cover of small-scale (<0.25 m2) assemblages of reef substrata (e.g., changes in cover between massive corals, branching corals, bleached corals, macroalgae, and coralline red algae). Mixture compositions were obtained precisely by analysis of digital images collected by a camera calibrated to the field of view of the spectrometer. Linear unmixing techniques were applied to derive estimates of substratum proportions using the full spectral resolution data and various transformations of it, including derivatives and down sampling (merging adjacent wavelengths into broader spectral bands). Comparison of actual and estimated substratum proportions indicate that spectral unmixing may be a practical approach for estimating subpixel-scale cover of coral reef substrata. In the most accurate treatment, coefficients of determination across all mixture sets were high for most end-member classes (37 of 52 cases with r 2 >0.64, i.e. r >0.8). The most successful analyses were based on derivatives of down-sampled data, implying that spectral unmixing benefits more from spectral smoothing and judicious choice of band locations than from high spectral resolution per se. Although these results show that changes in coral and algal cover can be determined by unmixing their spectra, the method is not yet an operational remote sensing tool. Primary empirical research is needed before taking the next step, which is to incorporate a water column, of variable depth, above the sea bed.  相似文献   

5.
Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth''s most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model''s realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.  相似文献   

6.
7.
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.  相似文献   

8.

Background

Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning.

Methodology/Principal Findings

Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but weak microbe-host specificity.

Conclusions/Significance

This study presents the first multi-scale survey of bacterial diversity in cold-water coral reefs, spanning a total of five observational levels including three spatial scales. It demonstrates that bacterial communities in cold-water coral reefs are structured by multiple factors acting at different spatial scales, which has fundamental implications for the monitoring of microbial diversity and function in those ecosystems.  相似文献   

9.

Background

Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems.

Methodology/Principal Findings

Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria.

Conclusions/Significance

Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.  相似文献   

10.
Coral Reefs - Algal turfs are expected to increasingly dominate the benthos of coral reefs in the Anthropocene, becoming important sources of reef productivity. The sediments trapped within algal...  相似文献   

11.
Throughout their entire global range coral reefs are in decline. Coral bleaching, macroalgal overgrowth and coral diseases — responses signaling the declining health of coral reefs — have occurred with increasing frequency and intensity in recent decades. Decreased calcification may also be affecting coral reefs over longer time scales. Declines in coral reef health have been attributed to various natural and anthropogenic processes, but assignment of causality has proved problematic. Coral bleaching has been observed during extreme climate events such as El Niño; furthermore, there are indications that exposure to UV radiation, air, infectious microbes, and elevated temperature plays a role in the dramatic increase of coral bleaching since the mid-1970s. Macroalgal overgrowth is usually ascribed to eutrophi-cation and coral diseases to weakening of the coral host resistance by anthropogenic pollution. An issue precluding a strict anthropogenic cause of coral reef decline is that both overgrowth and coral diseases are known to occur, although less frequently, on reefs remote from human development. While its causes are still being unraveled, the overall decline in coral reef health sends an unambiguous signal that the coral reef system is losing its ability to withstand sudden or persistent environmental changes.  相似文献   

12.
珊瑚礁生态脆弱性评价--以泰国思仓岛为例   总被引:1,自引:0,他引:1  
珊瑚礁生态系统受到环境变化、人类活动等各种因素的严重威胁,保护珊瑚礁生态系统是目前全球海洋生态保护的热点,对珊瑚礁开展定量的生态脆弱性评估能够为保护管理对策的制定提供重要科学依据。本研究选取泰国思仓岛作为研究区域,结合空间分析技术建立了具有通用性的珊瑚礁生态脆弱性评估方法。基于ESA模型构建了珊瑚礁生态脆弱性综合指数和评价指标体系,系统分析了思仓岛珊瑚礁脆弱性的来源、构成,并直观展现了脆弱性的区域空间分布。结果表明:思仓岛研究区东北侧的珊瑚礁生态脆弱性大于西南侧,当地珊瑚礁的关键影响因子分别为驳船排污、港口码头、水体透明度等。根据脆弱性评价的结果,提出了当地珊瑚礁保护与修复的空间分区管理对策。本研究为印度-太平洋区系珊瑚礁生态脆弱性评价提供了可行的示例,也为中国的珊瑚礁可持续管理研究提供了借鉴和参照。  相似文献   

13.
Coral reef monitoring is a reliable tool to assess the effect of climate change as corals are sensitive to increases in water temperatures between 30 °C and 35 °C resulting in bleaching - a whitening process when the corals lose their color and the reefs begin to die. Existing satellite-based monitoring products facilitate coral bleaching monitoring over large spatial scales, but their use in predicting local scale stress that influences the bleaching severity across reefs is limited. In this paper, we describe a Stationary Reef Monitoring System (SRMS) that monitors the time evolution of coral reefs through the photography of nearby coral clusters. Simultaneously, the SRMS measures and records environmental parameters such as temperature, solar irradiance (PAR), and salinity in the waters surrounding the coral colonies. When deployed in the sea, the SRMS detected a 0.1–0.4 °C variability in temperature between the in situ and satellite datasets. The SRMS uses color photography along with quantitative data on environmental parameters to monitor the health of corals and eliminates the need for physical/visual verification of coral health by a diver. By this approach, one can determine the stress thresholds of corals and identify the vulnerable and resilient reefs so as to prioritize conservation efforts.  相似文献   

14.
The complexity and heterogeneity of shallow coastal waters over small spatial scales provides a challenging environment for mapping and monitoring benthic habitats using remote sensing imagery. Additionally, changes in coral reef community structure are occurring on unprecedented temporal scales that require large-scale synoptic coverage and monitoring of coral reefs. A variety of sensors and analyses have been employed for monitoring coral reefs: this study applied a spectrum-matching and look-up-table methodology to the analysis of hyperspectral imagery of a shallow coral reef in the Bahamas. In unconstrained retrievals the retrieved bathymetry was on average within 5% of that measured acoustically, and 92% of pixels had retrieved depths within 25% of the acoustic depth. Retrieved absorption coefficients had less than 20% errors observed at blue wavelengths. The reef scale benthic classification derived by analysis of the imagery was consistent with the percent cover of specific coral reef habitat classes obtained by conventional line transects over the reef, and the inversions were robust as the results were similar when the benthic classification retrieval was constrained by measurements of bathymetry or water column optical properties. These results support the use of calibrated hyperspectral imagery for the rapid determination of bathymetry, water optical properties, and the classification of important habitat classes common to coral reefs.  相似文献   

15.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.  相似文献   

16.
 Coral reef communities of the western Atlantic have changed over the past two to three decades, but the magnitude and causes of this change remain controversial. Part of the problem is that small-scale patterns observed on individual reefs have been erroneously extrapolated to landscape and geographic scales. Understanding how reef coral assemblages vary through space is an essential prerequisite to devising sampling strategies to track the dynamics of coral reefs through time. In this paper we quantify variation in the cover of hard corals in spur-and-groove habitats (13–19 m depth) at spatial scales spanning five orders of magnitude along the Florida Reef Tract. A videographic sampling program was conducted to estimate variances in coral cover at the following hierarchical levels and corresponding spatial scales: (1) among transects within sites (0.01- to 0.1-km scale), (2) among sites within reefs (0.5- to 2-km scale), (3) among reefs within sectors of the reef tract (10- to 20-km scale), and (4) among sectors of the reef tract (50- to 100-km scale). Coral cover displayed low variability among transects within sites and among sites within reefs. This means that transects from a site adequately represented the variability of the spur-and-groove habitat of the reef as a whole. Variability among reefs within sectors was highly significant, compared with marginally significant variability among sectors. Estimates from an individual reef, therefore, did not adequately characterize nearby reefs, nor did those estimates sufficiently represent variability at the scale of the sector. The structure and composition of coral reef communities is probably determined by the interaction of multiple forcing functions operating on a variety of scales. Hierarchical analyses of coral assemblages from other geographic locations have detected high variability at scales different from those in the present study. A multiscale analysis should, therefore, precede any management decisions regarding large reef systems such as the Florida Reef Tract. Accepted: 19 July 1999  相似文献   

17.
Coral reef banks may form an important component of mesophotic coral ecosystems (MCEs) in the Caribbean, but remain poorly explored relative to shallower reefs and mesophotic habitats on slopes and walls. Consequently, the processes structuring mesophotic coral reef communities are not well understood, particularly the role of disturbance. A large and regionally important mesophotic system, the Hind Bank Marine Conservation District (MCD), St. Thomas, USVI, was systematically surveyed. Data were used to construct a comprehensive benthic habitat map for the MCD, describe the abiotic and biotic components of the benthos among habitats, and investigate patterns of coral health among habitats. Two-thirds of the MCD (23.6 km2) was found to be dense coral reef (Coral Cover = 24.1%) dominated by the Montastraea annularis species complex. Coral reef ecosystems were topographically complex, but could be classified into distinct habitat types, including high coral banks (35.8% of the MCD) and two large novel coral reef habitat types corresponding to an extremely flat basin (18%) and a highly rugose hillock basin (6.5%), containing thousands of coral knolls (2–10 m high). An extreme disease event with undescribed signs of mortality occurred on 47% of coral reefs and reached a high prevalence in affected areas (42.4% ± 6.3 SE, N = 26). The disease was significantly clustered in the basin habitats of the western MCD (global Moran’s I = 0.32, P < 0.01). Observations of the spatial pattern suggested that the driver was specific to the basin habitats and may have been caused by a coherent abiotic event.  相似文献   

18.
With the general aim of classification and mapping of coral reefs, remote sensing has traditionally been more difficult to implement in comparison with terrestrial equivalents. Images used for the marine environment suffer from environmental limitation (water absorption, scattering, and glint); sensor-related limitations (spectral and spatial resolution); and habitat limitation (substrate spectral similarity). Presented here is an advanced approach for ground-level surveying of a coral reef using a hyperspectral camera (400–1,000 nm) that is able to address all of these limitations. Used from the surface, the image includes a white reference plate that offers a solution for correcting the water column effect. The imaging system produces millimeter size pixels and 80 relevant bands. The data collected have the advantages of both a field point spectrometer (hyperspectral resolution) and a digital camera (spatial resolution). Finally, the availability of pure pixel imagery significantly improves the potential for substrate recognition in comparison with traditionally used remote sensing mixed pixels. In this study, an image of a coral reef table in the Gulf of Aqaba, Red Sea, was classified, demonstrating the benefits of this technology for the first time. Preprocessing includes testing of two normalization approaches, three spectral resolutions, and two spectral ranges. Trained classification was performed using support vector machine that was manually trained and tested against a digital image that provided empirical verification. For the classification of 5 core classes, the best results were achieved using a combination of a 450–660 nm spectral range, 5 nm wide bands, and the employment of red-band normalization. Overall classification accuracy was improved from 86 % for the original image to 99 % for the normalized image. Spectral resolution and spectral ranges seemed to have a limited effect on the classification accuracy. The proposed methodology and the use of automatic classification procedures can be successfully applied for reef survey and monitoring and even upscaled for a large survey.  相似文献   

19.
陈飚  余克服 《生态学报》2022,42(21):8531-8543
病毒对珊瑚礁生态系统中的生物进化、生物地球化学循环、珊瑚疾病等方面具有重要的生态影响。随着珊瑚礁的全球性退化,病毒在珊瑚礁生态系统中的功能与危害日益显现。综述了珊瑚礁生态系统中病毒的研究现状与进展,包括:(1)珊瑚礁病毒的多样性与分布特征(水体、宿主、核心病毒组);(2)珊瑚礁病毒的生态功能(感染方式、促进生物进化、生物地球化学循环);(3)珊瑚礁病毒对全球气候变化的响应(热压力、珊瑚疾病)。总体而言,珊瑚礁生态系统具有极高的病毒多样性,所发现的60个科占已知所有病毒科数量的58%。珊瑚的核心病毒组主要由双链DNA病毒、单链DNA病毒、单链逆转录病毒所组成,珊瑚黏液层对病毒具有富集作用。"Piggyback-the-Winner"(依附-胜利)是病毒在珊瑚礁中主要的生物动力学模式,其可通过水平基因迁移的方式促进礁区生物进化。病毒可通过裂解细菌与浮游藻类的途径参与珊瑚礁的生物地球化学循环,尤其是碳循环与氮循环过程。此外,病毒还具有介导珊瑚热白化与直接引发珊瑚疾病的能力,这会影响珊瑚礁生态系统应对气候变化的适应性与恢复力。基于国际上的研究进展综述,结合南海珊瑚礁生态现状提出以下研究方向,以期促进我国珊瑚礁病毒学的发展:(1)开展南海珊瑚礁中病毒多样性的识别及其时-空分布特征研究;(2)探索病毒对南海珊瑚热白化、珊瑚疾病的介导作用及其与气候变化的关系;(3)揭示病毒对南海珊瑚礁生物地球化学循环的贡献。  相似文献   

20.
Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (~AD 1400-1820) and an ongoing recovery in the NWHI (~AD 1950-2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>10(3) km(2)). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号