首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies demonstrated that osmolality is the key signal in sperm motility activation in Sparus aurata spermatozoa. In particular, we have proposed that the hyper-osmotic shock triggers water efflux from spermatozoa via aquaporins. This water efflux determines the cell volume reduction and, in turn, the rise in the intracellular concentration of ions. This increase could lead to the activation of adenylyl cyclase and of the cAMP-signaling pathway, causing the phosphorylation of sperm proteins and then the initiation of sperm motility. This study confirms the important role of sea bream AQPs (Aqp1a and Aqp10b) in the beginning of sperm motility. In fact, when these proteins are inhibited by HgCl2, the phosphorylation of some proteins (174 kDa protein of head; 147, 97 and 33 kDa proteins of flagella), following the hyper-osmotic shock, was inhibited (totally or partially). However, our results also suggest that more than one transduction pathways could be activated when sea bream spermatozoa were ejaculated in seawater, since numerous proteins showed an HgCl2(AQPs)-independent phosphorylation state after motility activation. The role played by each different signal transduction pathways need to be clarified.  相似文献   

2.
Capacitation-like changes in equine spermatozoa following cryopreservation   总被引:1,自引:0,他引:1  
Thomas AD  Meyers SA  Ball BA 《Theriogenology》2006,65(8):1531-1550
The primary objective of this study was to assess plasma membrane characteristics and activation of signal transduction pathways in equine spermatozoa during both in vitro capacitation and cryopreservation. Significant plasma membrane restructuring, as assessed by measurement of plasma membrane lipid disorder and phospholipid scrambling, was not observed until after cryopreservation and subsequent thawing (P < 0.05). Although in vitro capacitated cells also displayed increased plasma membrane lipid disorder and phospholipid scrambling (P < 0.05), it appeared that regulation of these events in in vitro capacitated versus cryopreserved equine spermatozoa was not identical. Addition of 5 microM staurosporine to the capacitation media reduced plasma membrane phospholipid scrambling (P < 0.05), but supplementation to the freezing extender prior to cryopreservation did not. Furthermore, progesterone was able to induce a greater degree of acrosomal exocytosis in in vitro capacitated versus frozen/thawed spermatozoa. Expression of phospholipid scramblase, a protein thought to be important in plasma membrane phospholipid scrambling, did not differ between treatments. Comparison of protein tyrosine phosphorylation patterns between in vitro capacitated and cryopreserved cells demonstrated a divergence in signal transduction. Cellular signaling in in vitro capacitated equine spermatozoa appeared to be in part dependent on activation of the cAMP/PKA pathway, whereas signaling in cryopreserved cells seemed to proceed predominantly through alternative pathways. Taken together, these data support the idea that capacitation and "cryocapacitation" are not equivalent processes.  相似文献   

3.
Nematode spermatozoa are highly specialized amoeboid cells that must acquire motility through the extension of a single pseudopod. Despite morphological and molecular differences with flagellated spermatozoa (including a non‐actin‐based cytoskeleton), nematode sperm must also respond to cues present in the female reproductive tract that render them motile, thereby allowing them to locate and fertilize the egg. The factors that trigger pseudopod extension in vivo are unknown, although current models suggest the activation through proteases acting on the sperm surface resulting in a myriad of biochemical, physiological, and morphological changes. Compelling evidence shows that pseudopod extension is under the regulation of physiological events also observed in other eukaryotic cells (including flagellated sperm) that involve membrane rearrangements in response to extracellular cues that initiate various signal transduction pathways. An integrative approach to the study of nonflagellated spermatozoa will shed light on the identification of unique and conserved processes during fertilization among different taxa. Mol. Reprod. Dev. 77: 739–750, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Sperm motility in fishes. (II) Effects of ions and osmolality: a review   总被引:2,自引:0,他引:2  
The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.  相似文献   

5.
Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation.  相似文献   

6.
鱼类精子活力研究进展   总被引:26,自引:0,他引:26  
鱼类精子在精巢和精浆中一般不活动,只有当精子被排到体外并被外界环境的溶液稀释后才能活动.鱼类精子活力受渗透压、离子、pH 值、温度及CO2 等因子的调节和影响, 不同的鱼类其精子活力有不同的调节方式;外界因子对鱼类精子活力的影响, 是通过影响cAMP-ATP-Mg2+ 系统来影响鞭毛的活动而实现的. 精子活力的评价指标主要有:精子激活后的运动时间、精子激活比例、精子运动速度及精子鞭毛摆动频率等. 大多数鱼类的精子,其活动能力是在生殖管道中获得的.  相似文献   

7.
Demembranated spermatozoa of Ciona do not become motile when provided with MgATP, unless their motility is activated in vivo before demembranation or unless the demembranated spermatozoa are activated in vitro with cAMP or with the catalytic subunit of a cAMP-dependent protein kinase. CAMP causes a greater than fivefold enhancement of 32P incorporation by demembranated spermatozoa. Analysis by one-dimensional PAGE and autoradiography shows several axonemal protein bands that become 32P-labeled during in vitro activation with cAMP and identifies protein bands whose labeling is specifically reduced if motility of the spermatozoa is activated before demembranation, suggesting that these proteins also become phosphorylated during activation of motolity in vivo. These phosphorylated proteins appear to include dynein heavy-chain components, but axonemal tubulin is not phosphorylated. Partially phosphorylated spermatozoa can be activated by an increase in KCI concentration, which appears to dissociate one phosphorylated component from the axoneme.  相似文献   

8.
In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.  相似文献   

9.
Ultrastructural observations of cryoinjury in kangaroo spermatozoa   总被引:1,自引:1,他引:0  
Macropod spermatozoa have proven difficult to cryopreserve such that empirical studies using high concentrations of glycerol and/or DSMO have resulted in only 10% post-thaw motility. We examined the ultrastructure and freeze-fracture of caput and cauda epididymal macropod spermatozoa at 35, 4 degrees C and following cryopreservation with and without 20% glycerol. The addition of 20% glycerol resulted in significant damage to the sperm plasma membrane and mitochondria compared to no glycerol at the same temperatures (P<0.05). Following cryopreservation, 20% glycerol significantly improved the preservation of the cauda epididymal sperm plasma membrane and mitochondria and reduced the incidence of axonemal damage and axonemal spaces. For caput epididymal spermatozoa, glycerol only improved the preservation of the plasma membrane following cryopreservation (P<0.05). Freeze fracture microscopy revealed a pattern of helically wound intramembranous particles in the plasma membrane over the fibre network of the mid piece of the sperm tail. The fibre network is an interconnecting cytoskeletal structure found underneath the plasma membrane of the kangaroo sperm midpiece and is thought to add rigidity to the proximal portion of the sperm tail. After thawing, the plasma membrane was damaged such that this structure was missing in patches, and the helical rows of particles were mal-aligned. On the principal piece, particles were arranged randomly at physiological temperatures; however, upon cooling to 4 degrees C with 20% glycerol, the particles become aggregated. Once rewarmed (35 degrees C), particles over the principal piece resumed their random organisation. This finding is further evidence of a reversible phase transition of the macropod sperm plasma membrane during cooling that is not associated with a loss of motility or membrane integrity.  相似文献   

10.
Inaba K 《Zoological science》2003,20(9):1043-1056
Sperm motility is generated by a highly organized, microtubule-based structure, called the axoneme, which is constructed from approximately 250 proteins. Recent studies have revealed the molecular structures and functions of a number of axonemal components, including the motor molecules, the dyneins, and regulatory substructures, such as radial spoke, central pair, and other accessory structures. The force for flagellar movement is exerted by the sliding of outer-doublet microtubules driven by the molecular motors, the dyneins. Dynein activity is regulated by the radial spoke/central pair apparatus through protein phosphorylation, resulting in flagellar bend propagation. Prior to fertilization, sperm exhibit dramatic motility changes, such as initiation and activation of motility and chemotaxis toward the egg. These changes are triggered by changes in the extracellular ionic environment and substances released from the female reproductive tract or egg. After reception of these extracellular signals by specific ion channels or receptors in the sperm cells, intracellular signals are switched on through tyrosine protein phosphorylation, Ca2+, and cyclic nucleotide-dependent pathways. All these signaling molecules are closely arranged in each sperm flagellum, leading to efficient activation of motility.  相似文献   

11.
Mammalian testicular spermatozoa are immotile, thus, to reach the oocyte, they need to acquire swimming ability under the control of different factors acting during the sperm transit through the epididymis and the female genital tract. Although bicarbonate is known to physiologically increase motility by stimulating soluble adenylate cyclase (sAC) activity of mammalian spermatozoa, no extensive studies in human sperm have been performed yet to elucidate the additional molecular mechanisms involved. In this light, we investigated the effect of in vitro addition of bicarbonate to human spermatozoa on the main intracellular signaling pathways involved in regulation of motility, namely, intracellular cAMP production and protein tyrosine phosphorylation. Bicarbonate effects were compared with those of the phosphatidyl-inositol-3 kinase inhibitor, LY294002, previously demonstrated to be a pharmacological stimulus for sperm motility. Bicarbonate addition to spermatozoa results in a significant increase in sperm motility as well as in several hyperactivation parameters. This stimulatory effect of bicarbonate and LY294002 is mediated by an increase in cAMP production and tyrosine phosphorylation of the A kinase anchoring protein, AKAP3. The specificity of bicarbonate effects was confirmed by inhibition with 4,4'-di-isothiocyanostilbene-2,2'-disulfonic acid. We remark that, in human spermatozoa, bicarbonate acts primarily through activation of sAC to stimulate tyrosine phosphorylation of AKAP3 and sperm motility because both effects are blunted by the sAC inhibitor 2OH-estradiol. In conclusion, our data provide the first evidence that bicarbonate stimulates human sperm motility and hyperactivation through activation of sAC and tyrosine phosphorylation of AKAP3, finally leading to an increased recruitment of PKA to AKAP3.  相似文献   

12.
Adenylyl cyclases (ACs) synthesize cAMP and are present in cells as transmembrane AC and soluble AC (sAC). In sperm, the cAMP produced regulates ion channels and it also activates protein kinase-A that in turn phosphorylates specific axonemal proteins to activate flagellar motility. In mammalian sperm, sAC localizes to the midpiece of flagella, whereas in sea urchin sperm sAC is along the entire flagellum. Here we show that in sea urchin sperm, sAC is complexed with proteins of the plasma membrane and axoneme. Immunoprecipitation shows that a minimum of 10 proteins is tightly associated with sAC. Mass spectrometry of peptides derived from these proteins shows them to be: axonemal dynein heavy chains 7 and 9, sperm specific Na+/H+ exchanger, cyclic nucleotide-gated ion channel, sperm specific creatine kinase, membrane bound guanylyl cyclase, cyclic GMP specific phosphodiesterase 5A, the receptor for the egg peptide speract, and alpha- and beta-tubulins. The sAC-associated proteins could be important in linking membrane signal transduction to energy utilisation in the regulation of flagellar motility.  相似文献   

13.
Archaeal photoreceptors, together with their cognate transducer proteins, mediate phototaxis by regulating cell motility through two-component signal transduction pathways. This sensory pathway is closely related to the bacterial chemotactic system, which has been studied in detail during the past 40 years. Structural and functional studies applying site-directed spin labelling and electron paramagnetic resonance spectroscopy on the sensory rhodopsin II/transducer (NpSRII/NpHtrII) complex of Natronomonas pharaonis have yielded insights into the structure, the mechanisms of signal perception, the signal transduction across the membrane and provided information about the subsequent information transfer within the transducer protein towards the components of the intracellular signalling pathway. Here, we provide an overview about the findings of the last decade, which, combined with the wealth of data from research on the Escherichia coli chemotaxis system, served to understand the basic principles microorganisms use to adapt to their environment. We document the time course of a signal being perceived at the membrane, transferred across the membrane and, for the first time, how this signal modulates the dynamic properties of a HAMP domain, a ubiquitous signal transduction module found in various protein classes.  相似文献   

14.
The aim of the present investigations was to test a novel technology comprising cryoprotectant-free vitrification of the spermatozoa of rainbow trout and to study the ability of sucrose and components of seminal plasma to protect these cells from cryoinjuries. Spermatozoa were isolated and vitrified using five different mediums: Group 1: standard buffer for fish spermatozoa, Cortland(?)-medium (CM, control); Group 2: CM+1% bovine serum albumin (BSA); Group 3: CM+1% BSA+0.125 M sucrose; Group 4: CM+1% BSA+40% seminal plasma; and Group 5: CM+1% BSA+40% seminal plasma+0.125 M sucrose. For cooling, 20 μL suspensions of cells from each group were dropped directly into liquid nitrogen. For warming, the spheres containing the cells were quickly submerged in CM+1% BSA at 37 °C with gentle agitation. The quality of spermatozoa before and after vitrification was analysed by the evaluation of motility, cytoplasmic membrane integrity (SYBR-14/propidium iodide staining technique), and mitochondrial membrane integrity (JC-1 staining). Motility (86%, 71%, 80%, 81%, and 82%, for Groups 1, 2, 3, 4, and 5, respectively) and cytoplasmic membrane integrity (90%, 82%, 83%, 84%, and 87%, respectively) of spermatozoa in all the 5 groups were not decreased significantly. All tested solutions can be used for vitrification of fish spermatozoa with good post-warming motility and cytoplasmic membrane integrity. However, mitochondrial membrane potentials of the spermatozoa in Groups 1, 2, 3, 4, and 5 were changed significantly (6%, 50%, 37%, 55%, and 34%, respectively) (P(1,2,3,4,5)<0.001; P(2,3,4,5) <0.01)(P(3-5)>0.1). This rate was maximal in Group 4 (CM+1% BSA+40% seminal plasma). In conclusion, this is the first report about successful cryoprotectant-free cryopreservation of fish spermatozoa by direct plunging into liquid nitrogen (vitrification). Vitrification of fish spermatozoa without permeable cryoprotectants is a prospective direction for investigations: these cells can be successfully vitrified with 1% BSA+40% seminal plasma without significant loss of important physiological parameters.  相似文献   

15.
The present study shows the roles of osmolality, calcium (Ca(2+))-potassium (K(+)) antagonist and Ca(2+) in sperm activation and flagellar beating of a sturgeon species, sterlet (Acipenser ruthenus). Sperm motility was activated at hypoosmolality relative to seminal plasma and suppressed at 175 mOsmol kg(-1). Sperm activation was totally suppressed by 0.35mM K(+), but Ca(2+) could fully reverse K(+) inhibitory effect at Ca(2+): K(+) ratio of 0.25. Neither EGTA (a chelator of Ca(2+) ions) nor nifedipine (a Ca(2+) channel blocker) prevented sperm activation. But, sperm motility and velocity were significantly decreased by EGTA, nifedipine and an inhibitor for Ca(2+)/calmodulin activated phosphodiesterase (w-7) that suggest role of Ca(2+) signaling after triggering sperm activation through hypoosmolality. Symmetric flagellar beating was also turned to asymmetric after activation in w-7, which is an evidence for modulation of Ca(2+)-binding proteins activity. Sturgeon sperm, similar to salmonids, is immotile in seminal plasma due to high K(+) concentrations, but the mechanism of sperm activation seems to be closer to other fish species where osmolality prohibits sperm activation in seminal plasma. In these species, hypoosmolality is the primary signal for sperm Ca(2+)-dependent signaling of axonemal beating.  相似文献   

16.
The role of intracellular signal transduction mechanisms in regulating the motility and metabolism of rat spermatozoa in undiluted caudal epididymal fluid (CEF) was examined. Samples of CEF containing immotile spermatozoa were exposed to drugs and other agents that either stimulate signal transduction pathways or mimic the action of their second messengers. Under these conditions, sperm motility in 25–30 nl of CEF was stimulated by calcium ions (Ca2+), N,2′ -O-dibutyryl-guanosine 3′:5′ -cyclic monophosphate (dibutryl cGMP), cyclic adenosine 3′:5′-monophosphate (cAMP), N6,2′-O-dibutyryladenosine 3′:5′ -cyclic monophosphate (dibutyryl cAMP), 8-bromoadenosine 3′:5′ -cyclic monophosphate (8-bromo cAMP), caffeine, theophylline and bicarbonate ions (HCO3?). Other agents such as magnesium ions (Mg2+), veratridine, phospholipase C (PLC), ionophore A23187, 1,2-dioctenoyl-sn-glycerol (DAG), phorbol 12-myristate 13-acetate, phospholipase A2 (PLA2), arachidonic acid, and melittin did not significantly influence motility. In the presence of radiolabelled energy substrates, untreated (immotile) spermatozoa in samples of CEF utilised D-[U-14C]glucose and [1-14C]acetate as exogenous energy sources for oxidative metabolism. No detectable 14C-lactate was produced, and none of the drugs altered the rate of glycolytic or oxidative metabolism. The findings suggest that the motility of rat caudal epididymal spermatozoa is regulated by Ca2+ and the guanylate cyclase and adenylate cyclase pathways, but not through the PLC and PLA2 pathways. Also, their metabolism of exogenous substrate was uncoupled from the induction of motility, and their oxidative capacity exceeded the rate of flux of glucose-carbon through the glycolytic pathway. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Spermatozoa are particularly susceptible to damage induced by ROS, especially as their plasma membrane contains large amounts of polyunsaturated fatty acids. Mammalian sperm cells develop the capacity to fertilise ova during transport in the male and female reproductive tracts. The nature and quality of the micro-environment of the female reproductive tract are important factors for sperm selection, capacitation and subsequent acrosome reaction.In vitro experiments using capacitating media have shown remodeling of the lipid composition of the sperm membrane during these steps and the same approaches have also shown that a low level of ROS was necessary. The oxidative status of the female genital tract is therefore certainly of primary importance for the physiological maturation of the sperm cell. It has been previously reported that an inappropriate oxidative balance in the male genital tract (ie, an excessive ROS production overwhelming all antioxidant strategies) impairs the structure and several functions of sperm cells. This phenomenon may arise in the female genital tract, but has never been investigated. The present paper is a review of the literature on these subjects and also reports our results concerning the changes in semen lipid content during cervical mucus migration and the effect of cervical mucus polymorphonuclear (PMN) cells on sperm characteristics. We showed that the sperm levels of vitamin E, cholesterol, phospholipids, sphingomyelin and plasmalogen assessed by HPLC decreased after migration through cervical mucus. These modifications were observed in parallel with lipid enrichment of the cervical mucus, suggesting an efflux of cholesterol and lipids from sperm cells. The spermatozoa recovered postmigration in the cervical mucus were characterised by low levels of the various lipid classes. Spermatozoa that migrated in cervical mucus samples with a considerable quantity of polymorphonuclear leukocytes (PMN) also showed significantly increased levels of sphingomyelin, diacyl phospholipids and plasmalogens in comparison to spermatozoa that migrated in cervical mucus devoid of PMN. Finally, we also found that PMA-induced ROS production was significantly increased for spermatozoa treated with cervical mucus containing PMN.  相似文献   

18.
Studying sperm motility in marine fish: an overview on the state of the art   总被引:3,自引:0,他引:3  
This contribution reviews existing literature and some new own findings on teleost sperm motility and factors controlling it, emphasizing selected marine species. In marine teleosts with external fertilization (halibut, turbot, sea bass, hake, cod and tuna serving as examples), mainly the osmolality controls sperm motility: movement is activated by transfer from the seminal fluid into sea water, representing a large upward step in osmolality. The exception are flatfishes (such as halibut or turbot) where CO2 is responsible for flagellar immotility in seminal fluid. In all cases, the duration of motility is short and limited to minutes ranges due to partial exhaustion of the ATP energy and to increase of internal ionic concentration as suggested by studies with de‐membranated/ATP reactivated flagellae. In this overview, we compare motility characteristics (percentage of active spermatozoa, velocity, linearity), flagellar waves parameters (wave length and amplitude, number of waves) and energy content (respiration and ATP concentration) within species where these data have been established. All parameters show a rapid decrease after activation; therefore progressive forward movement needed by the sperm to effectively reach the egg surface, is limited to a short initial period following activation. In two species (turbot and sea bass) the rapid decrease of sperm motility is reflected by a corresponding decrease of the fertilizing ability. Exposure to external environments (sea water) at activation also leads to local defects of the sperm flagella posing additional limitations on motility duration. However, minor flagellar damages as well as energetic exhaustion are reversible: after a resting period in a non‐swimming solution at the end of the motility period, spermatozoa can be re‐activated for a second motility period. From these results and from additional data obtained from de‐membranated/ATP re‐activated spermatozoa, a paradigm has been developed which establishes a link between external osmolality (sea water), internal ionic concentration and control of axonemal activity.  相似文献   

19.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

20.
The membranes of all eukaryotic motile (9 + 2) and immotile primary (9 + 0) cilia harbor channels and receptors involved in sensory transduction (reviewed by). These membrane proteins are transported from the cytoplasm onto the ciliary membrane by vesicles targeted for exocytosis at a point adjacent to the ciliary basal body. Here, we use time-lapse fluorescence microscopy to demonstrate that select GFP-tagged sensory receptors undergo rapid vectorial transport along the entire length of the cilia of Caenorhabditis elegans sensory neurons. Transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 move in ciliary membranes at rates comparable to the intraflagellar transport (IFT) machinery located between the membrane and the underlying axonemal microtubules. OSM-9 motility is disrupted in certain IFT mutant backgrounds. Surprisingly, motility of transient receptor potential polycystin (TRPP) channel PKD-2 (polycystic kidney disease-2), a mechano-receptor, was not detected. Our study demonstrates that IFT, previously shown to be necessary for transport of axonemal components, is also involved in the motility of TRPV membrane protein movement along cilia of C. elegans sensory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号