首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test whether the effects of feeding on swimming performance vary with acclimation temperature in juvenile southern catfish (Silurus meridionalis), we investigated the specific dynamic action (SDA) and swimming performance of fasting and feeding fish at acclimation temperatures of 15, 21, 27, and 33 °C. Feeding had no effect on the critical swimming speeding (Ucrit) of fish acclimated at 15 °C (p = 0.66), whereas it elicited a 12.04, 18.70, and 20.98% decrease in Ucrit for fish acclimated at 21, 27 and 33 °C, respectively (p < 0.05). Both the maximal postprandial oxygen consumption rate (VO2peak) and the active metabolic rate (VO2active, maximal aerobic sustainable metabolic rate of fasting fish) increased significantly with temperature (p < 0.05). The postprandial maximum oxygen consumption rates during swimming (VO2max) were higher than the VO2active of fasting fish at all temperature groups (p < 0.05). The VO2max increased with increasing temperature, but the relative residual metabolic scope (VO2max? VO2peak) during swimming decreased with increasing in temperature. The present study showed that the impairment of postprandial swimming performance increased with increasing temperature due to the unparalleled changes in the catfish's central cardio-respiratory, peripheral digestive and locomotory capacities. The different metabolic strategies of juvenile southern catfish at different temperatures may relate to changes in oxygen demand, imbalances in ion fluxes and dissolved oxygen levels with changes in temperature.  相似文献   

2.
While the lethal toxicity of pyrethroid insecticides to fish is well documented, their sublethal physio-behavioral effects remain poorly characterized. Known pyrethroid-associated changes to insect neuromuscular function may translate into similar effects in fish, thereby altering swimming ability and affecting foraging, predator avoidance, and migration. Three experiments were conducted using critical (Ucrit) and burst (Umax) swimming speeds to assess the sublethal effects of the pyrethroids permethrin and deltamethrin in juvenile rainbow trout (Oncorhynchus mykiss). Fish were exposed to deltamethrin (100, 200, or 300 ng/L) or permethrin (1, 2, or 3 μg/L) in water for 4 d, and assessed for swimming performance. Deltamethrin (200 and 300 ng/L) reduced Ucrit, but not Umax, while both swim performance measurements were unaffected by permethrin. Subsequent experiments used only Ucrit to assess deltamethrin exposure. In a time course experiment, deltamethrin (300 ng/L) reduced Ucrit after 1 and 4 d of exposure, but after 7 d of exposure Ucrit was fully recovered. Finally, deltamethrin (1, 2, or 3 μg/L) reduced Ucrit after 1 h bath exposures similar to recommended protocols for deltamethrin based sea-lice treatment in aquaculture. The real-world implications of the revealed pyrethroid-associated swimming ability reductions in salmon may be important in areas close to aquaculture facilities.  相似文献   

3.
Energy metabolism fuels swimming and other biological processes. We compared the swimming performance and energy metabolism within and across eight freshwater fish species. Using swim tunnel respirometers, we measured the standard metabolic rate (SMR) and maximum metabolic rate (MMR) and calculated the critical swimming speed (Ucrit). We accounted for body size, metabolic traits, and some morphometric ratios in an effort to understand the extent and underlying causes of variation. Body mass was largely the best predictor of swimming capacity and metabolic traits within species. Moreover, we found that predictive models using total length or SMR, in addition to body mass, significantly increased the explained variation of Ucrit and MMR in certain fish species. These predictive models also underlined that, once body mass has been accounted for, Ucrit can be independently affected by total length or MMR. This study exemplifies the utility of multiple regression models to assess within-species variability. At interspecific level, our results showed that variation in Ucrit can partly be explained by the variation in the interrelated traits of MMR, fineness, and muscle ratios. Among the species studied, bleak Alburnus alburnus performed best in terms of swimming performance and efficiency. By contrast, pumpkinseed Lepomis gibbosus showed very poor swimming performance, but attained lower mass-specific cost of transport (MCOT) than some rheophilic species, possibly reflecting a cost reduction strategy to compensate for hydrodynamic disadvantages. In conclusion, this study provides insight into the key factors influencing the swimming performance of fish at both intra- and interspecific levels.  相似文献   

4.
Flow regimes are believed to be of major evolutionary significance in fish. The flow regimes inhabited by cyprinids vary extensively from still flow regimes to riptide flow regimes. To test (i) whether flow‐driven swimming performance and relevant morphological differentiation are present among fish species and (ii) whether evolutionary shifts between high‐flow and low‐flow habitats in cyprinids are associated with evolutionary trade‐offs in locomotor performance, we obtained data on both steady and unsteady swimming performance and external body shape for 19 species of cyprinids that typically occur in different flow regimes (still, intermediate and riptide). We also measured the routine energy expenditure (RMR) and maximum metabolic rate (MMR) and calculated the optimal swimming speed. Our results showed that fish species from riptide groups tend to have a higher critical swimming speed (Ucrit), maximum linear velocity (Vmax) and fineness ratio (FR) than fish from the other two groups. However, there was no correlation between the reconstructed changes in the steady and unsteady swimming performance of the 19 species. According to the phylogenetically independent contrast (PIC) method, the Ucrit was actively correlated with the MMR. These results indicated that selection will favour both higher steady and unsteady swimming performance and a more streamlined body shape in environments with high water velocities. The results suggested that steady swimming performance was more sensitive to the flow regime and that for this reason, changes in body shape resulted more from selective pressure on steady swimming performance than on unsteady swimming performance. No evolutionary trade‐off was observed between steady and unsteady swimming performance, although Ucrit and MMR were found to have coevolved. However, a further analysis within each typically occurring habitat group suggested that the trade‐off that may exist between steady and unsteady swimming performance may be concealed by the effect of habitat.  相似文献   

5.
Most studies on behavioural contributions to dispersal and recruitment during early life history stages of fishes have focused on coral reef species. For cold ocean environments, high variation in seasonal temperature and development times suggest that parallel studies on active behaviour are needed for cold-water species. Thus, we examined the critical swimming speed (Ucrit) of marine fish larvae from 2 contrasting species: Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin), a pelagic and bottom spawner respectively. Within-species comparisons showed that sculpin reared at 6 °C had lower initial Ucrit values, but a faster Ucrit increase through development compared with 3 °C conspecifics, ultimately resulting in faster critical swimming speeds at metamorphosis (10.5 vs. 9.1 cm·s− 1). In contrast, although cod larvae reared at 10 °C were faster swimmers at first feeding than 6 °C fish, temperature differences were absent after the first week. These results show that temperature influences the trajectory of larval critical swimming speed development, but that the relationship is species-specific. Although 6 °C sculpin and cod of similar length had equivalent Ucrit values, the smaller size of cod at hatch (5.3 vs. 10.8 mm for sculpin) resulted in much lower age-specific Ucrit values for cod. These data have significant implications for how swimming activity of the two species might affect dispersal, particularly in the first few weeks post-hatch. Overall, our data suggest that temperature during larval development influences the swimming capacity of cold-water marine fishes, and has important ramifications for biophysical models of dispersal.  相似文献   

6.
We determined the maximum sustained swimming speed (Ucrit), and resting and maximum ventilation rates of the Antarctic fish Pagothenia borchgrevinki at five temperatures between −1°C and 8°C. We also determined resting metabolic rate (VO2) at −1°C, 2°C, and 4°C. Ucrit of P. borchgrevinki was highest at −1°C (2.7±0.1 BL s−1) and rapidly decreased with temperature, representing a thermal performance breadth of only 5°C. This narrow thermal performance supports our prediction that specialisation to the subzero Antarctic marine environment is associated with a physiological trade-off in performance at high temperatures. Resting oxygen consumption and ventilation rate increased by more than 200% across the temperature range, which most likely contribute to the decrease in aerobic swimming capabilities at higher temperatures.  相似文献   

7.
Water temperature is known to be a particularly important environmental factor that affects fish swimming performance, but it is unknow how acute temperature changes affect the fish performance of Ptychobarbus kaznakovi. P. kaznakovi in the Lancang River have declined quickly in recent years, and this species was used to examine the effects of acute temperature changes on swimming abilities and oxygen consumption in a Brett‐type swimming tunnel respirometer. The standard metabolic rate (SMR) and routine metabolic rate (RMR) showed 216% and 134% increases, respectively, at 22°C (an acute increase from 17 to 22°C) compared to those at 12°C (an acute decrease from 17 to 12°C). Moreover, the RMR was approximately 1.7, 1.6 and 1.3 times the value of the SMR at 12°C, 17°C and 22°C, respectively. The critical swimming speed (Ucrit) of P. kaznakovi at 22°C was 5.45 ± 0.45BL/S, which was 45% higher than that at 12°C (3.77 ± 0.92BL/S). The oxygen consumption rates (MO2) reached their maximum values at swimming speeds near the Ucrit for all the temperature treatments. The maximum metabolic rate (MMR) values at 12°C, 17°C and 22°C were 274.53 ± 142.60 (mgO2 kg?1 hr?1), 412.85 ± 216.34 (mgO2 kg?1 hr?1) and 1,095.73 ± 52.50 (mgO2 kg?1 hr?1), respectively. Moreover, there was a narrow aerobic scope at 12°C compared to that at 17°C and 22°C. The effect of acute temperature changes on the swimming abilities and oxygen consumption of P. kaznakovi indicated that water temperature changes caused by dam construction could directly affect energy consumption during the upstream migration of fish.  相似文献   

8.
The swimming performance of juvenile rock carp (Procypris rabaudi, Tchang) subjected to repeated fatigue exercise was studied using a flume-type respirometer at 20°C. The critical swimming speed (Ucrit) and oxygen consumption rate (MO2) of juvenile rock carp were measured during two successive stepped velocity tests, following a 60 min rest interval. Ucrit of rock carp was giving a recovery ratio (Rr) of 92.64%, and exertion exercise decreases Ucrit. When MO2 was plotted as a linear function of U, the slope for trial 1 was 1.06 and 1.50 for trial 2, indicating a decreasing in swimming efficiency. The maximum metabolic rate (MMR) increased from 17.06 ± 1.14 mmol O2/(kg·hr) to 19.14 ± 1.23 mmol O2/(kg·hr), and the exercise post oxygen consumption rate (EPOC) increased from 9.00 to 9.65 mmol O2/kg. Repeated fatiguing exercise increased both the aerobic and anaerobic cost of reaching Ucrit, but anaerobic metabolism accounted for a larger proportion in the trial 2. The data investigation on the swimming performance and the physiological response to fatigue provide important design criteria for fishways.  相似文献   

9.
The Wujiang River, a tributary of the Three Gorges Reservoir, has many dams along its length. These dams alter the river's natural habitat and produce various flow regimes and degrees of predator stress. To test whether the swimming performance and external body shape of pale chub (Zacco platypus) have changed as a result of alterations in the flow regime and predator conditions, we measured the steady (U crit) and unsteady (fast-start) swimming performances and morphological characteristics of fish collected from different sites along the Wujiang River. We also calculated the maximum respiratory capacity and cost of transport (COT). We demonstrated significant differences in swimming performance and morphological traits among the sampling sites. Steady swimming performance was positively correlated with water velocity and negatively correlated with the abundance of predators, whereas unsteady swimming performance was negatively correlated with water velocity. The body shape was significantly correlated with both swimming performance and ecological parameters. These findings suggested that selection pressure on swimming performance results in a higher U crit and a more streamlined body shape in fast-flow and (or) in habitats with low predator stress and subsequently results in a lower COT. These characteristics were accompanied by a poorer fast-start performance than that of the fish from the slow-flow and (or) high-predator habitats. The divergence in U crit may also be due in part to variation in respiratory capacity.  相似文献   

10.
为探究水体全氟辛烷磺酸(PFOS)污染对鱼类爆发游泳及其代谢恢复能力的影响, 将中华倒刺鲃幼鱼(Spinibarbus sinensis)暴露在不同浓度(0、0.32、0.8、2和5 mg/L)PFOS后, 测定PFOS暴露对其静止代谢率(RMR)、爆发游泳速度(Uburst)以及运动力竭后代谢恢复特征的影响。结果发现, 暴露浓度对实验鱼的Uburst和相对爆发游泳速度(rUburst)均影响显著(P<0.05), 5 mg/L PFOS暴露导致Uburst和rUburst分别下降了17.4%和10.8%, PFOS对rUburst的影响表现出“非单调剂量效应”; 暴露浓度对实验鱼的RMR影响显著(P<0.05), 5 mg/L PFOS暴露导致RMR显著升高, 但PFOS对运动后代谢峰值(MMR)、代谢率增量(MS)、代谢变化倍率(F-MS)、力竭运动后过量氧耗(EPOC)无显著影响(P>0.05)。研究结果提示: PFOS污染改变实验鱼能量代谢水平的下限, 而对其代谢水平的上限无明显的限制性作用; PFOS污染将可能对鱼类捕食——逃避捕食者、穿越激流寻找适宜生境等生存关联的生命活动起到负面影响, 但对无氧代谢关联的代谢恢复能力无显著的生态毒理效应。  相似文献   

11.
European round gobies (Neogobius melanostomus) are displacing several important native North American fish species. Controlling their invasion is contingent on understanding their swimming inclination and potential. We assessed goby swimming inclination by recording activity in a 2 m flume over a ~24 h period, and swimming potential using a critical swimming (U crit) test, as well as burst tests in still and flowing water. When given the choice to move, gobies covered as much as 14 m/h, with a slight bias towards nocturnal activity and an overall upstream preference. When confined and coerced to perform a U crit test, they burst-and-held to achieve 35.5 ± 1.1 cm/s. Thirty minutes following U crit, they were able to burst-and-coast in a sprint test to almost twice this speed. In still water, they exhibited startle bursts of up to 163 cm/s. We provide a swimming endurance model that indicates flow rates would need to be >125 cm/s to prevent upstream movement, and free of refuge areas in which to recover. The current study shows that the round goby is a surprisingly powerful swimmer with the capacity to continue its invasion should hydrologic control be absent.  相似文献   

12.
Although dietary exposure of adult fish to organoselenium in contaminated aquatic ecosystems has been reported to bioaccumulate and cause larval deformities in offspring, subtle physiological effects produced through low level waterborne selenium exposure in fish such as swim performance and aerobic capacity have not been investigated. To evaluate potential effects of selenite on these responses, adult zebrafish (Danio rerio) were exposed to nominal aqueous concentrations of 0, 10 or 100 μg/L sodium selenite for 14 days. Upon completion of the exposure period, fish underwent two successive swim trials in a swim tunnel respirometer to determine critical swim speed (Ucrit), oxygen consumption (MO2), standard and active metabolic rates, aerobic scope (AS) and cost of transport (COT) followed by analysis of whole body triglyceride and glycogen concentrations. Selenite exposure had a significant negative effect on Ucrit and aerobic capacity. Active metabolic rates and AS significantly decreased in both selenite exposure groups after the second swim trial. No significant effect was observed in MO2, standard metabolic rate, COT, triglyceride and glycogen levels, or condition factor between groups. These results suggest that aqueous selenite exposure at environmentally relevant concentrations produces adverse effects on aerobic capacity that can diminish endurance and maximum swim speeds, which may lower fish survivability.  相似文献   

13.
We studied the effect of intraspecific hybridization on swimming performance in sterlet, hypothesizing that such hybridization increases the performance by inducing the hybrid vigor. A total of 12 purebred and hybrid crosses were reproduced from Danube (D) and Volga (V) populations of Acipenser ruthenus. Within each cross, one group of fish was exposed to temperature challenges mimicking the temperature variation in the natural environment during summer. Temperature challenges comprised a constant increase from 19°C to 24°C and then return to 19°C within 12 hr (dT<1°C/hr), and were carried out every third day over the experimental period of 20 days. As a control, fish from each cross were kept at a constant temperature of 19°C. Critical swimming speed (Ucrit) was assessed on day 0 (29 days post hatch, dph), 10 (39 dph) and 20 (49 dph). The critical swimming speeds ranged from 5.12 cm/s (1.63 TL/s) to 16.44 cm/s (2.4 TL/s) during the experimental period (29–49 dph). There were no significant differences observed in Ucrit between repeatedly temperature challenged and control groups, indicating that the temperature challenge did not alter the swimming performance. The critical swimming speed showed positive relationship with total body length. Comparing intraspecific hybrid crosses with purebred crosses, no significant difference in swimming performance was observed. It is thus concluded that swimming performance is a family specific trait. There is no indication that intraspecific hybridization affects swimming performance nor that close‐to‐natural temperature regimes increase swimming performance.  相似文献   

14.
The critical swimming speed (Ucrit) of gilthead seabream (Sparus aurata, Linnaeus 1875) was studied in two ontogenetic phases, early (13.7-18.7 mm total length, TL) and late metamorphosis (20.4-34.3 mm TL, after the full development of fin meristics and during squamation ontogeny), under four exercise temperatures (15, 20, 25 and 28 °C). Both the exercise temperature and the ontogenetic stage had a significant effect on the relative Ucrit (RUcrit) of S. aurata, with the fish of early metamorphosis phase (E group) presenting significantly higher RUcrit than those of the late metamorphosis stage (L group). This ontogenetic shift in swimming performance was accompanied by significant ontogenetic shifts of body shape and of muscle anatomy. Compared to the L group, S. aurata of the E group were characterized by a streamline body shape and significantly higher relative contribution of the slow-red muscle to the cross-sectional area of the body (31.0 ± 1.3% vs 12.0 ± 1.2% in the L group).  相似文献   

15.
Fish express a high degree of diversity in morphology, which is closely related to behaviors such as swimming ability. The effect of morphology on swimming performance is explored using geometric morphometric analyses and classic critical swimming speed (Ucrit) tests in Chinese sturgeon Acipenser sinensis and Siberian sturgeon A. baerii. It was found that A. sinensis is a stronger swimmer compared to A. baerii, with an average 25% higher Ucrit (expressed in body lengths per second). In A. sinensis, the depth and length of the snout and the trailing edge length of the dorsal fin were negatively correlated with Ucrit, whereas the height of the trunk anterior, the leading edge length of the dorsal fin and anal fin, and the length and width of the ventral lobe were positively related to Ucrit; similar relationships between Ucrit and morphological characters of the anterior trunk, dorsal fin, anal fin and caudal fin were found in A. baerii. Moreover, although the degree of upward bending of the snout of A. baerii was negatively related to Ucrit, there was a positive relationship between the length of the caudal peduncle and Ucrit as well as between the dorsal tail lobe and Ucrit. In addition, the streamline index (SI) was calculated by comparing landmark coordinates on the trunk displayed in the relative warp, with its corresponding point on the NACA (the U.S. National Advisory Committee for Aeronautics) airfoil shape. SI showed that the body shape in RW1 of the A. baerii with more swimming capacity was more approximate to the NACA 0016 airfoil shape, but there was no such symmetry for A. sinensis, possibly due to body bending caused by stiffness.  相似文献   

16.
17.
In order to determine the potential for the invasive fishes sunbleak Leucaspius delineatus and topmouth gudgeon Pseudorasbora parva to disperse through saline waters their behaviour and physiology were investigated during exposure to salinities of 10·0 and 12·5. Increased salinity caused an increase in whole body cortisol in both species, but sunbleak and topmouth gudgeon showed very different metabolic and behavioural responses to the salinity stress. Sunbleak displayed increased swimming activity in brackish water, which may be important for dispersal through saline waters in the wild, although there were increased metabolic costs associated with this behaviour. Conversely, topmouth gudgeon showed a reduction in both swimming activity and metabolic rate in brackish waters. A pronounced depression in food intake (70–80%) was shown by both species during the salinity exposures. Both sunbleak and topmouth gudgeon, however, showed a full recovery of food intake within 24 h following return to fresh water. Despite the fact that exposure to saline waters is stressful, and affects both physiology and behaviour, rapid recovery of appetite after return to fresh water suggests that short-term use of brackish waters is a feasible dispersal route for sunbleak and topmouth gudgeon in the wild.  相似文献   

18.
This study compared the critical swimming speed (Ucrit) and endurance performance of three Australian freshwater fish species in different swim‐test apparatus. Estimates of Ucrit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free‐surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory‐based measures to the design of fish passage infrastructure.  相似文献   

19.
It has recently been suggested that general rules of change in ecological communities might be found through the development of functional relationships between species traits and performance. The physiological, behavioural and life-history traits of fishes are often organised along a fast-slow lifestyle continuum (FSLC). With respect to resistance (capacity for population to resist change) and resilience (capacity for population to recover from change) to environmental hypoxia, the literature suggests that traits enhancing resilience may come at the expense of traits promoting resistance to hypoxia; a trade-off may exist. Here I test whether three fishes occupying different positions along the FSLC trade-off resistance and resilience to environmental hypoxia. Static respirometry experiments were used to determine resistance, as measured by critical oxygen tension (Pcrit), and capacity for (RC) and magnitude of metabolic reduction (RM). Swimming respirometry experiments were used to determine aspects of resilience: critical (Ucrit) and optimal swimming speed (Uopt), and optimal cost of transport (COTopt). Results pertaining to metabolic reduction suggest a resistance gradient across species described by the inequality Melanotaenia fluviatilis (fast lifestyle) < Hypseleotris sp. (intermediate lifestyle) < Mogurnda adspersa (slow lifestyle). The Ucrit and COTopt data suggest a resilience gradient described by the reverse inequality, and so the experiments generally indicate that three fishes occupying different positions on the FSLC trade-off resistance and resilience to hypoxia. However, the scope of inferences that can be drawn from an individual study is narrow, and so steps towards general, trait-based rules of fish community change along environmental gradients are discussed.  相似文献   

20.
The swimming capacity of Barbus bocagei was measured with the critical swimming speed (Ucrit) standard test in a modified Bla?ka‐type swim tunnel. Sixty B. bocagei were tested and they exhibited a mean ±s .d . Ucrit of 0·81 ± 0·11 m s?1 or 3·1 ± 0·86 total lengths per second (LT s?1). Sex had no effect on Ucrit but significant differences were found between the swimming performance of fish with distinct sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号