首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Pacific sand lance (Ammodytes hexapterus) is an ecologically important prey species for many vertebrate marine predators in the Pacific Northwest. In this study, we examined the use of intertidal habitat by young of the year (YOY) sand lance in Barkley Sound, British Columbia. We selected 14 of the original 29 independent environmental variables for modelling based on univariate analysis for variable selection. These were then used to model sand lance presence-absence using a classification tree approach. Based on our models we found that sand lance avoided mud and intertidal eelgrass. For sites that had very little mud and no intertidal eelgrass, sand lance preferred sediment size mean ≥1,918 μm or sites with sediment size mean ≤1,918 μm but with relatively well sorted sediment (sorting values ≤2.56 SDs, used as a heterogeneity index of the substrate grain size). Adjacent subtidal characteristics were not found to be important at this scale of study. This suggests intertidal substrate characteristics and presence-absence of intertidal eelgrass are the main influences on occurrence of YOY in the intertidal. Our results support the hypothesis that sand lance are associated with particular sediment types, however intertidal sediment types used by sand lance in our study differ from known preferences of sand lance for subtidal sediment types. This difference may be due to unique habitat constraints for intertidal versus subtidal regions. Although it is unknown if the results of this study are widely applicable, the results begin to identify intertidal habitat features that are important for Pacific sand lance.  相似文献   

2.
Roberts JH  Angermeier PL 《Oecologia》2007,151(3):417-430
Relationships between environmental variability and movement are poorly understood, due to both their complexity and the limited ecological scope of most movement studies. We studied movements of fantail (Etheostoma flabellare), riverweed (E. podostemone), and Roanoke darters (Percina roanoka) through two stream systems during two summers. We then related movement to variability in measured habitat attributes using logistic regression and exploratory data plots. We indexed habitat conditions at both microhabitat (i.e., patches of uniform depth, velocity, and substrate) and mesohabitat (i.e., riffle and pool channel units) spatial scales, and determined how local habitat conditions were affected by landscape spatial (i.e., longitudinal position, land use) and temporal contexts. Most spatial variability in habitat conditions and fish movement was unexplained by a site’s location on the landscape. Exceptions were microhabitat diversity, which was greater in the less-disturbed watershed, and riffle isolation and predator density in pools, which were greater at more-downstream sites. Habitat conditions and movement also exhibited only minor temporal variability, but the relative influences of habitat attributes on movement were quite variable over time. During the first year, movements of fantail and riverweed darters were triggered predominantly by loss of shallow microhabitats; whereas, during the second year, microhabitat diversity was more strongly related (though in opposite directions) to movement of these two species. Roanoke darters did not move in response to microhabitat-scale variables, presumably because of the species’ preference for deeper microhabitats that changed little over time. Conversely, movement of all species appeared to be constrained by riffle isolation and predator density in pools, two mesohabitat-scale attributes. Relationships between environmental variability and movement depended on both the spatiotemporal scale of consideration and the ecology of the species. Future studies that integrate across scales, taxa, and life-histories are likely to provide greater insight into movement ecology than will traditional, single-season, single-species approaches. The Virginia Cooperative Fish and Wildlife Research Unit is jointly sponsored by the US Geological Survey, Virginia Polytechnic Institute and State University, Virginia Department of Game and Inland Fisheries, and Wildlife Management Institute.  相似文献   

3.
Coupling habitat models based on GIS and on ground variables could help identify suitable areas (by means of landscape models obtained by GIS variables) to concentrate management actions for species’ conservation. In this study, the habitat requirements of Lesser Greys (LGS) and Woodchat Shrikes (WS), two threatened farmland bird species declining in Europe, were assessed in Apulia (south-eastern Italy) by means of binary logistic regression at two different levels: landscape (using GIS-measured variables); and, territory (using ground-measured variables) scales. The LGS occurrence at landscape scale was correlated to steppe-like areas and cereal crops. At the territory level, significant effects were detected for deciduous forests and the presence of isolated trees and shrubs. The WS occurrence at landscape scale was promoted by steppe-like areas and cereal crops, whereas, at the territory level significant effects were detected for steppe-like areas positively and suburban areas negatively. The landscape model was extrapolated to the entire region. Within highly suitable areas (occurrence probability higher than 0.66 according to the landscape model), we measured average habitat features and compared them with the optimal mosaic depicted by the territory level models. This allowed us to give spatially explicit and site-specific management recommendations for these two threatened species. LGS will mostly benefit from an increase in isolated shrubs and trees; whereas for WS, the most widespread recommendations are to increase steppe-like habitat and to prevent further urbanisation.Coupling “coarse” landscape models with the species ecology provided by fine-scaled models can integrate relevant information on species potential distribution and territory level requirements, making planning fine-tuned habitat management (within potentially suitable landscapes) in a spatially explicit way possible.  相似文献   

4.
Classification is one of the most widely applied tasks in ecology. Ecologists have to deal with noisy, high-dimensional data that often are non-linear and do not meet the assumptions of conventional statistical procedures. To overcome this problem, machine-learning methods have been adopted as ecological classification methods. We compared five machine-learning based classification techniques (classification trees, random forests, artificial neural networks, support vector machines, and automatically induced rule-based fuzzy models) in a biological conservation context. The study case was that of the ocellated turkey (Meleagris ocellata), a bird endemic to the Yucatan peninsula that has suffered considerable decreases in local abundance and distributional area during the last few decades. On a grid of 10 × 10 km cells that was superimposed to the peninsula we analysed relationships between environmental and social explanatory variables and ocellated turkey abundance changes between 1980 and 2000. Abundance was expressed in three (decrease, no change, and increase) and 14 more detailed abundance change classes, respectively. Modelling performance varied considerably between methods with random forests and classification trees being the most efficient ones as measured by overall classification error and the normalised mutual information index. Artificial neural networks yielded the worst results along with linear discriminant analysis, which was included as a conventional statistical approach. We not only evaluated classification accuracy but also characteristics such as time effort, classifier comprehensibility and method intricacy—aspects that determine the success of a classification technique among ecologists and conservation biologists as well as for the communication with managers and decision makers. We recommend the combined use of classification trees and random forests due to the easy interpretability of classifiers and the high comprehensibility of the method.  相似文献   

5.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

6.
The genetic variation within and among eight Tunisian natural populations of Lavandula multifida L., from different bioclimatic zones was assessed using random amplified polymorphic DNA (RAPDs). Of a total of 97 generated bands from seven selected primers, 84 bands were polymorphic. The genetic diversity within a population was high and varied according to the populations (0.308 < H’ < 0.459) without relationships to altitudes or pluviothermic indices of sites. The genetic differentiation among populations was high (GST = 0.395 and ΦST = 0.318). All population pairs were significantly differentiated. Among populations, within ecological groups genetic structure was high (0.219); whilst among them it was low (ΦCT = 0.049; P < 0.05). The correlation between ΦST and geographic distance matrices among pairs of populations was not significant, suggesting that genetic connectivity between populations has a stochastic component at all spatial scales. The neighbour‐joining cluster analysis showed that individuals from each population clustered together. UPGMA cluster analysis showed that population groupings are not strictly in accordance with bioclimates or geographic location. The genetic differentiation in L. multifida could have occurred at local scales because of genetic drift. Efforts should be made to protect all populations. The maintenance of substantial population size should be initiated via fencing and controlling collection to restore the regeneration of populations.  相似文献   

7.
向海湿地丹顶鹤迁徙动态及其栖息地保护研究   总被引:9,自引:0,他引:9  
基于1997~2003年间吉林省通榆县向海湿地春季丹顶鹤数量和分布数据,分析了丹顶鹤的迁徙动态及其与栖息地生态环境变化之间的关系.结果表明,1997~2003年间,每年春季丹顶鹤的种群数量分别为32、25、64、92、72、59和14只;丹顶鹤迁达向海的最早年份为2002年(3月12日),最晚年份为2001年(3月28日),大多年份于3月中旬到达向海;其产卵时间最早的年份为2000年(4月1日),最晚年份为2003年(5月10日),大多年份于4月上旬开始产卵;在分布上,以2000年丹顶鹤分布点最多(15个),1998年和2003年分布点较少(2个).表明丹顶鹤的迁徙动态随湿地水文条件的改变而变化.据此提出了利用洪水资源保护和恢复丹顶鹤等珍稀水禽栖息地的技术与对策.  相似文献   

8.
Modeling the population dynamics of patchily distributed species is a challenge, particularly when inference must be based on incomplete and small data sets such as those from most species of conservation concern. Here, we develop an open population spatial capture–recapture (SCR) model with sex-specific detection and population dynamics parameters to investigate population trend and sex-specific population dynamics of a capercaillie (Tetrao urogallus) population in Switzerland living in eight distinct forest patches totaling 22 km2 within a region of 908 km2 and sampled via scat collection. Our model accounts for the patchy distribution of habitat and the uncertainty introduced by collecting data only every third year, while producing sex by patch population trajectories. The estimated population trajectory was a decline of 2% per year; however, the sex specificity of the model revealed a decline in the male population only, with no evidence of decline in the female population. The decline observed in males was explained by the demography of just two of the eight patches. Our study highlights the flexibility of open population SCR models for assessing population trajectories through time and across space and emphasizes the desirability of estimating sex-stratified population trends especially in species of conservation concern.  相似文献   

9.
As a result of habitat fragmentation, the capercaillie ( Tetrao urogallus ) population in the Black Forest mountain range in southwestern Germany has declined rapidly during the last decades and now persists in patchy isolated fragments. To study the effects of fragmentation, we quantified dispersal patterns by genotyping 213 individuals in four subpopulations. We used a landscape genetics approach to analyse individual genetic variation, and despite overall low genetic structure, we found strong indications for a major boundary separating the northern part of the Black Forest area from the other subpopulations. Males and females display different gene flow patterns across the landscape. Females tend to disperse across longer distances than do males. We additionally studied the effects of the population decline on genetic diversity during the last hundred years. Although the population has dramatically declined from over 4000 to 250 males over a few decades, genetic diversity was not affected in the same way. We found two haplotypes that were present only in historic samples but microsatellite markers revealed no significant reduction in genetic diversity. Among historic samples, genetic differentiation was very low, indicating that the current genetic structure is caused by recent habitat fragmentation. We argue that inferences about reduced genetic diversity are drawn cautiously and recommend sampling over different temporal scales.  相似文献   

10.
Understanding variations in animal movement and habitat selection behaviour over fine spatial and temporal scales remains a particularly challenging goal in ecology and conservation. Here we document for the first time the diel variations in movement patterns and habitat use by wild-ranging Cabrera voles in fragmented Mediterranean farmland, based on radiotracking data (2006–2008) of 25 adult individuals occupying stable home-ranges in vegetation mosaics dominated by wet grasses and shrubs. Results indicated that the proportion of time animals spent moving, the distance moved, and the selection strength of main vegetation types were closely linked behavioural traits, which varied considerably across different periods of the 24-h cycle. In general, voles moved more frequently and over larger distances during daytime (between 06 h15–22 h00), which was when wet grasses were also used more intensively. These patterns were generally consistent across seasons, though during the dry season there was some tendency for a decrease in movement activity during the hottest hours of the day (between 10 h15–14 h00), with peaks around crepuscular hours (06 h15–10 h00 and 18 h15–22 h00). Overall, our study provides evidence that Cabrera voles may show notable shifts in habitat use and movement patterns on a finer scale than previously considered. This supports the idea that knowledge of the diel variations in species movement-habitat relationships should strongly contribute to improving local habitat management, as well as effective sampling and monitoring programs targeting the species.  相似文献   

11.
12.
1. Britain is unusual in the quantity and quality of species and habitat data available, at both national and regional scales. This paper reviews the sources, coverage and quality of these data. 2. Habitat and species data are used by conservation agencies in England, Scotland and Wales for site selection and for monitoring habitat quality. The paper argues, however, that neither habitat data nor species distribution data on their own are sufficient to locate and monitor habitats for nature conservation purposes effectively. 3. Differences in sampling methodologies between habitat and species surveys present methodological difficulties for the development of an integrated monitoring system that uses both types of data. These problems need to be overcome if habitat and species data are to be used more effectively for nature conservation in the wider countryside. 4. A more integrated system based on the concept of biotope occupancy is proposed and discussed. The implementation of the system would assist with understanding those factors that explain observed patterns in species distribution and diversity, thereby helping to improve the effectiveness of policies for nature conservation.  相似文献   

13.
Sustainable use of tropical forest systems requires continuous monitoring of biological diversity and ecosystem functions. This can be efficiently done with early warning (short-cycle) indicator groups of non-economical insects, whose population levels and resources are readily measured. Twenty-one groups of insects are evaluated as focal indicator taxa for rapid assessment of changes in Neotropical forest systems. Composite environmental indices for heterogeneity, richness, and natural disturbance are correlated positively with butterfly diversity in 56 Neotropical sites studied over many years. Various components of alpha, beta and gamma-diversity show typical responses to increased disturbance and different land-use regimes. Diversity often increases with disturbance near or below natural levels, but some sensitive species and genes are eliminated at very low levels of interference. Agricultural and silvicultural mosaics with over 30% conversion, including selective logging of three or more large trees per hectare, show shifts in species composition with irreversible loss of many components of the butterfly community, indicating non-sustainable land and resource use and reduction of future options. Monitoring of several insect indicator groups by local residents in a species-rich Brazilian Amazon extractive reserve has helped suggest guidelines for cologically, economically, and socially sustainable zoning and use regimes.  相似文献   

14.
本研究在吉林省汪清县杜荒子林场东北红豆杉(Taxus cuspidata Sieb.et Zucc.)集中分布区进行调查,基于方差比率(VR)、Ochiai指数(OI)以及Spearman秩相关系数检验,对云冷杉林(群落1)、云冷杉林(群落2)和风桦林(群落3)等3个群落进行了种间关联性分析.结果显示:3个群落的方差比...  相似文献   

15.
16.
17.
Aim To explore the usefulness of Spatially Explicit Population Models (SEPMs), incorporating dispersal, as tools for animal conservation, as illustrated by the contrasting cases of four British mammals. Methods For each of the four species (American mink, Mustela vison, pine marten, Martes martes, dormouse, Muscardinus avellanarius and water vole, Arvicola terrestris) a spatial dynamics model was developed based on an integrated geographical information system (GIS) population model that linked space use to the incidence of the species. Each model had, first, a GIS, which stored environmental, habitat and animal population information, and secondly, an individual‐based population dynamics module, which simulated home range formation, individual life histories and dispersal within the GIS‐held landscape. Results The four models illustrated different interactions between species life‐history variables and the landscape, particularly with respect to dispersal. As water voles and dormice occupy home ranges that are small relative to blocks of their habitat, they were most effectively modelled in terms of the dynamics of local populations within habitat blocks but linked by dispersal. In contrast, because the home ranges of American mink and pine marten are large relative to blocks of habitat, they were best modelled as individuals moving through a landscape of more or less useful patches of habitat. For the water vole, the most significant predictors of population size were the carrying capacity of each habitat and the annual number of litters. For the dormouse, the likelihood of catastrophe and the upper limit to dispersal movement were the key variables determining persistence. Adult mortality and home‐range size were the only significant partial correlates of total population size for the American mink. Adult mortality was also a significant correlate of total population size in the pine marten, as were litter size and juvenile mortality. In neither the marten nor the mink was dispersal distance a significant factor in determining their persistence in the landscape. Main conclusions At a landscape scale it is difficult to measure animal distributions directly and yet conservation planning often necessitates knowledge of where, and in what numbers, animals are found, and how their distributions will be affected by interventions. SEPMs offer a useful tool for predicting this, and for refining conservation plans before irreversible decisions are taken in practice.  相似文献   

18.
19.
Acoustic monitoring of Orthoptera and its potential for conservation   总被引:3,自引:0,他引:3  
Songs of Orthoptera can be used for inventorying and monitoring of individual species and communities. Acoustic parameters such as carrier frequency and pulse rates allow the definition of recognizable taxonomic units (RTUs) which help to overcome the taxonomic impediment due to our scanty knowledge, particularly of tropical faunas. Bioacoustic diversity is a first estimate for species richness and provides baseline data which can be a prerequisite for conservation. Additional ecological and behavioural information such as habitat preference and singing schedules can be inferred. Many Orthoptera are sensitive indicator species for habitat quality in temperate and tropical ecosystems. Examples are given for evaluation of habitat quality and deterioration by acoustic detection of Orthoptera.  相似文献   

20.
Understanding if morphological differences between organisms that occupy different environments are associated to differences in functional performance can suggest a functional link between environmental and morphological variation. In this study we examined three components of the ecomorphological paradigm – morphology, locomotor performance and habitat use – using two syntopic wall lizards endemic to the Iberian Peninsula as a case study to establish whether morphological variation is associated with habitat use and determine the potential relevance of locomotor performance for such an association. Differences in habitat use between both lizards matched patterns of morphological variation. Indeed, individuals of Podarcis guadarramae lusitanicus, which are more flattened, used more rocky environments, whereas Podarcis bocagei, which have higher heads, used more vegetation than rocks. These patterns translated into a significant association between morphology and habitat use. Nevertheless, the two species were only differentiated in some of the functional traits quantified, and locomotor performance did not exhibit an association with morphological traits. Our results suggest that the link between morphology and habitat use is mediated by refuge use, rather than locomotor performance, in this system, and advise caution when extrapolating morphology-performance-environment associations across organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号