首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated whether the spontaneous transition between walking and running during moving with increasing speed corresponds to the speed at which walking becomes less economical than running. Seven active male subjects [mean age, 23.7 (SEM 0.7) years, mean maximal oxygen uptake ( ), 57.5 (SEM 3.3) ml·kg –1·min –1, mean ventilatory threshold (VTh), 37.5 (SEM 3) ml·kg –1 ·min –1] participated in this study. Each subject performed four exercise tests separated by 1-week intervals: test 1, and VTh were determined; test 2, the speed at which the transition between walking and running spontaneously occurs (ST) during increasing speed (increases of 0.5 km·h –1 every 4 min from 5 km·h –1) was determined; test 3, the subjects were constrained to walk for 4 min at ST, at ST ± 0.5 km·h –1 and at ST ± 1 km·h –1; and test 4, the subjects were constrained to run for 4 min at ST, at ST±0.5 km·-h –1 and at ST±1 km·h –1. During exercise, oxygen uptake ( ), heart rate (HR), ventilation ( ), ventilatory equivalents for oxygen and carbon dioxide (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaca% WaaSbaaSqaaiaabweaaeqaaOGaai4laiqadAfagaGaamaaBaaaleaa% caqGYaaabeaakiaacYcacaqGGaGaaeiiaiqadAfagaGaamaaBaaale% aacaqGfbaabeaakiaac+caceWGwbGbaiaacaqGdbGaae4tamaaBaaa% leaacaaIYaaabeaaaaa!4240!\[\dot V_{\text{E}} /\dot V_{\text{2}} ,{\text{ }}\dot V_{\text{E}} /\dot V{\text{CO}}_2 \]), respiratory exchange ratio (R), stride length (SL), and stride frequency (SF) were measured. The results showed that: ST occurred at 2.16 (SEM 0.04) m·s –1; , HR and speed at ST were significantly lower than the values measured at VTh (P< 0.001, P< 0.001 and P< 0.05, respectively); changed significantly with speed (P< 0.001) but was greater during running than walking below ST (ST minus 1 km·h –1, P< 0.001; ST minus 0.5 km·h –1, P< 0.05) with the converse above ST (ST.plus 1 km·h –1, P<0.05), whereas at ST the values of were very close [23.9 (SEM 1.1) vs 23.7 (SEM 0.8) ml·kg –1 · min –1 not significant, respectively, for walking and running]; SL was significantly greater during walking than running (P<0.001) and SF lower (P<0.001); and HR and were significantly greater during running than walking below ST (ST minus 1 km·h –1, P<0.01; ST minus 0.5 km·h –1, P{<0.05) with the converse above ST (ST plus 1 km·h –1, P·< 0.05), whereas no difference appeared for and R between the two types of locomotion. We concluded from this study that ST corresponded to the speed at which the energy expenditure of running became lower than the energy expenditure of walking but that the mechanism of the link needed further investigation.  相似文献   

2.
We aimed to investigate the pattern of utilisation of torpor and its impact on energy budgets in free-living grey mouse lemurs (Microcebus murinus), a small nocturnal primate endemic to Madagascar. We measured daily energy expenditure (DEE) and water turnover using doubly labelled water, and we used temperature-sensitive radio collars to measure skin temperature (T sk) and home range. Our results showed that male and female mouse lemurs in the wild enter torpor spontaneously over a wide range of ambient temperatures (T a) during the dry season, but not during the rainy season. Mouse lemurs remained torpid between 1.7–8.9 h with a daily mean of 3.4 h, and their T sk s fell to a minimum of 18.8 °C. Mean home ranges of mouse lemurs which remained normothermic were similar in the rainy and dry season. During the dry season, the mean home range of mouse lemurs showing daily torpor was significantly smaller than that of animals remaining normothermic. The DEE of M. murinus remaining normothermic in the rainy season (122 ± 65.4 kJ day−1) was about the same of that of normothermic mouse lemurs in the dry season (115.5 ± 27.3 kJ day−1). During the dry season, the mean DEE of M. murinus that utilised daily torpor was 103.4 ± 32.7 kJ day−1 which is not significantly different from the mean DEE of animals remaining normothermic. We found that the DEE of mouse lemurs using daily torpor was significantly correlated with the mean temperature difference between T sk and T a (r 2=0.37) and with torpor bout length (r 2 =0.46), while none of these factors explained significant amounts of variation in the DEE of the mouse lemurs remaining normothermic. The mean water flux rate of mouse lemurs using daily torpor (13.0 ± 4.1 ml day−1) was significantly lower than that of mouse lemurs remaining normothermic (19.4 ± 3.8 ml day−1), suggesting the lemurs conserve water by entering torpor. Thus, this first study on the energy budget of free-ranging M. murinus demonstrates that torpor may not only reflect its impact on the daily energy demands, but involve wider adaptive implications such as water requirements. Accepted: 29 August 2000  相似文献   

3.
To investigate for the first time the relationship between contrasting patterns of seasonal changes of the environment and activity, body mass and reproduction for small nocturnal primates in nature, we compared a population of golden brown mouse lemur (Microcebus ravelobensis) in a dry deciduous forest of northwestern Madagascar and of the brown mouse lemur (Microcebus rufus) in an evergreen rain forest of eastern Madagascar. Both species live under similar photoperiodic conditions. Golden brown mouse lemurs (GBML) were active during the whole period (May to December) irrespective of changing environmental conditions. In contrast, a part of the population of brown mouse lemurs (BML) showed prolonged seasonal torpor, related to body mass during periods of short day length and low ambient temperatures. Differences between species might be due to differences in ambient temperature and food supply. Body weight and tail thickness (adipose tissue reserve) did not show prominent differences between short and long photoperiods in GBML, whereas both differ significantly in BML, suggesting species-specific differences in the photoperiodically driven control of metabolism. Both species showed a seasonal reproduction. The rate of growth and size of the testes were similar and preceded estrous onset in both species suggesting a photoperiodic control of reproduction in males. The estrous onset in females occurred earlier in GBML than in BML. Estrous females were observed over at least 4 months in the former, but in only 1 month in the latter species. Intraspecific variation of estrous onset in GBML may be explained by body mass. Interspecific variation of female reproduction indicates species-specific differences in the control of reproduction. Thus, environmentally related differences in annual rhythms between closely related small nocturnal lemurs emerged that allow them to cope with contrasting patterns of seasonal changes in their habitats.  相似文献   

4.
This study sought to quantify the rate of energy expenditure (     ), the total cost of transport (COTtot) and the net cost of transport (COTnet) in camels Camelus dromedaries and donkeys Equus asinus during level locomotion.     of camels and domestic donkeys were measured at exercise speeds between 0 and 4.17 m s−1. Resting     for camels was significantly ( P <0.05) lower than predicted, while donkeys exhibited resting values similar to mammals of the same body mass. In both camels and donkeys     increased in a nearly linear fashion over the range of exercise speeds. The minimum COTtot of camels in the walking and pacing gaits were not significantly different ( P =0.27). Similarly, donkeys exhibited no significant difference ( P =0.09) in the minimum COTtot while walking and trotting. In both camels and donkeys, the minimum COTtot was significantly ( P <0.05) lower than the predicted COTtot for mammals of the same body mass. The COTnet in both camels and donkeys was determined to be gait dependent and significantly ( P <0.05) lower than the predicted minimum COTnet values for walking and running. The low COT seen in camels and donkeys results in energy and water savings.  相似文献   

5.
The choice of a suitable nest habitat by oviparous reptiles that deposit eggs into a nest and provide no subsequent parental care is likely to play a major role in the survival of the offspring. In particular variations in nest temperature may influence the rate at which embryos utilise their yolk energy.The effects of nest temperature on total energy use are however complex. High temperatures may advance development and shorten the time to hatching, thereby reducing energy use, but they also stimulate metabolic rate increasing energy use. The net effect of temperature on total energy demands is therefore uncertain.Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by open-flow respirometry during the incubation of loggerhead sea turtle eggs at three temperatures (27.6, 30.0 and 31.8 °C).At each temperature, VO2 and VCO2 showed a peak followed by a decline to hatching. Incubation temperature was negatively related to incubation duration and positively related to the maximum metabolic rate of the embryos. Peak VO2 was 74.8 ml/egg/day at 27.6 °C, 91.9 ml/egg/day at 30.0 °C, and 97.9 ml/egg/day at 31.8 °C. Peak VO2 occurred closer to hatching in eggs incubated at higher temperatures.Total energy expenditure was greatest at the lowest incubation temperature and lowest at the highest temperature. Total VO2 and VCO2 were 1777 ml/egg and 1226 ml/egg, respectively, at 27.6 °C, 1680 ml/egg and 1235 ml/egg at 30.0 °C, and 1613 ml/egg and 1191 ml/egg at 31.8 °C. Using the actual RQ values, this corresponds to a cost of development of 34,963 J/egg at 27.6 °C, 33,403 J/egg at 30.0 °C, and 32,107 J/egg at 31.8 °C.At all temperatures, the calculated respiratory quotient values did not suggest that yolk substrates were oxidised proportionately, but more likely indicated their sequential use.Nest temperatures may play a key role in energy use, with cooler temperature nests increasing the overall energy demands placed on developing embryos.  相似文献   

6.

1. 1.Laceria vivipara were hibernated from October to March. Respiration rates were measured at various times during this period and compared with respiration rates of lizards at the same temperatures in July.

2. 2.Rates of respiration at 10°C soon after entry into hibernation and towards the end of the dormant period did not differ significantly from rates at 10°C in July.

3. 3.After several weeks in hibernation at 10°C a depression of metabolism occurred which produced acclimated respiration rates significantly lowe than 10°C rates measured at other times of year. This is interpreted as a probable case of negative metabolic compensation to temperature (inverse acclimation).

4. 4.No difference in respiration rates at 5°C could be detected between dormant and summer lizards.

5. 5.Energy expenditure during winter dormancy accounts for approximately 5% of the energy assimilated annually from food. Inverse acclimation at 10°C effects an energy saving amounting to about 35% of the total dormancy expenditure.

Author Keywords: Hibernation; Oxygen consumption; metabolic adaptation; energy expenditure; Lizard; Lacerta vivipara  相似文献   


7.
Six Alpine (AL; 38.4 ± 3.0 kg), Angora (AN; 23.1 ± 2.7 kg), Boer (BO; 40.8 ± 4.5 kg) and Spanish (SP; 33.6 ± 2.2 kg) wethers (1.5 yr of age) were used to determine the effects of time of the day and potential interactions between time, genotype and diet quality on energy expenditure (EE), heart rate (HR) and EE:HR when fed near maintenance and fasting. The experiment consisted of four simultaneous crossovers, with 21 d for adaptation before measures. Diets were 60% concentrate (CON: 15% CP) and ground alfalfa hay (FOR: 23% CP), offered in two meals at 8:00 and 16:00 h. Energy expenditure was determined from O2 consumption and production of CO2 and CH4 over 2-day periods in fed and fasting states (total 4-day fasting period). Fasting EE was higher during the day than night, with values generally highest at 16:00–17:00 h. Animal within breed affected EE, HR and EE:HR (P < 0.05). The diurnal pattern in EE varied with diet (P < 0.05), although total daily EE was not different between diets. Before the morning meal, there were a number of hours during which EE was greater for CON than for FOR. However, at both meals the rise in EE was considerably greater for FOR versus CON, lasting for 3–4 h. The same general pattern in HR was observed, although the period of time when there was a dietary difference after the afternoon meal was shorter. For both fed and fasted goats, EE:HR differed among hours of the day (P < 0.05). EE:HR tended (P < 0.09) to differ between diets (5.99 and 6.21 for CON and FOR, respectively) and to be affected (P < 0.09) by an interaction between breed and diet (AL: 5.84 and 6.38; AN: 5.91 and 5.73; BO: 6.05 and 6.58; and SP: 6.17 and 6.15 kJ/(kg BW0.75 × day):heart beats/min) for CON and FOR, respectively. In conclusion, for use of HR to predict EE by goats, it appears desirable to determine the ratio of EE:HR with a diet similar to that consumed during prediction and over an extended period of time.  相似文献   

8.
During times of energetic stress many small mammals reduce their body temperature and metabolic rate, a state known as torpor. Whereas torpor is effective in energy conservation it also entails costs, such as reduced foetal development in pregnant females. Because it is currently not known how subtropical bats deal with energetic challenges during the reproductive season, the thermal biology of free-ranging non-reproductive male and pregnant female Nyctophilus bifax was examined during spring. Males entered torpor much more frequently than pregnant females. However, night time activity periods were similar in both sexes. My results show that even in the subtropics torpor is used regularly during the reproductive period in spring by non-reproductive male N. bifax to conserve energy, but is used rarely by pregnant females likely to prevent slowed foetal development.  相似文献   

9.
10.
Heat production (HP) of male and female mouse deer during eating, standing and sitting was determined using the open circuit respiration chamber (RC). The time taken for similar activities was also determined in an outdoor enclosure (OD). The animals were fed kangkong (Ipomoea aquatica), sweet potato (Ipomoea batatas) and rabbit pellet ad libitum. Male mouse deer consumed more dry matter (DM), organic matter (OM) and gross energy (GE) than female. The time for each activity of male and female mouse deer kept in RC and OD was similar. The average time spent in RC and OD for both male and female, respectively, for sitting (956 and 896 min/day) was significantly (P<0.01) longer than standing (463 and 520 min/day) and eating (21 and 24 min/day). Heat production for male and female mouse deer, respectively, during eating was the highest (0.44 and 0.43 kJ/kg W0.75/min) followed by standing (0.37 and 0.33 kJ/kgW0.75/min) and sitting (0.26 and 0.26 kJ/kg W0.75/min). The difference in HP per min during standing between male and female was significant (P<0.05). The HP for 08.00–14.00 h and 14.00–20.00 h periods were higher than 20.00–02.00 h and 02.00–08.00 h periods. The overall HP for males during 08.00–14.00 h and 14.00–20.00 h periods were significantly (P<0.05) higher (114.8 and 119.2 kJ/kg W0.75) than female (107.5 and 110.4 kJ/kg W0.75), respectively.  相似文献   

11.
Many bird species steeply increase their body mass prior to migration. These fuel stores are necessary for long flights and to overcome ecological barriers. The elevated body mass is generally thought to cause higher flight costs. The relationship between mass and costs has been investigated mostly by interspecific comparison and by aerodynamic modelling. Here, we directly measured the energy expenditure of Barn Swallows (Hirundo rustica) flying unrestrained and repeatedly for several hours in a wind tunnel with natural variations in body mass. Energy expenditure during flight (e f, in W) was found to increase with body mass (m, in g) following the equation e f = 0.38 × m 0.58. The scaling exponent (0.58) is smaller than assumed in aerodynamic calculations and than observed in most interspecific allometric comparisons. Wing beat frequency (WBF, in Hz) also scales with body mass (WBF = 2.4 × m 0.38), but at a smaller exponent. Hence there is no linear relationship between e f and WBF. We propose that spontaneous changes in body mass during endurance flights are accompanied by physiological changes (such as enhanced oxygen and nutrient supply of the muscles) that are not taken into consideration in standard aerodynamic calculations, and also do not appear in interspecific comparison.  相似文献   

12.
Little is known about the energy conservation strategies of free-ranging marsupials living in resource-poor Australian deserts. We studied activity patterns and torpor of free-living mulgaras (Dasycercus blythi) in arid central Australia during the winter of 2006. Mulgaras are small (approximately 75 g), nocturnal, insectivorous marsupials, with a patchy distribution in hummock grasslands. Mulgaras (six males, three females) were implanted intraperitoneally with temperature-sensitive transmitters and monitored for 6-55 d. Temperature profiles for different microhabitats and the thermal properties of soil and a number of burrows were also measured. Air temperature ranged from -3 degrees C at night to 30 degrees C during the day. Although burrows buffered temperature extremes, the thermal diffusivity of the sandy soil was high, and many burrows were shallow. Hence, soil and burrow temperatures averaged about 15 degrees C. The activity of mulgaras was often restricted to a few hours after sunset, before they retired into their burrows. Mulgaras employed torpor frequently, often entering torpor during the night and arousing around midday, with arousals occurring later on cooler days. Shallow burrows allowed cooling below mean T(soil). Consequently, body temperatures as low as 10.8 degrees C were observed. The longest torpor bout was 20.8 h. Torpor patterns changed seasonally and differed between males and females. From June to August, females entered torpor almost daily despite mating and gestation, but from the end of the gestation period onward, they remained normothermic. In contrast, males showed only shallow and short torpor during the mating season, but from mid-July, a transition to more frequent and deeper torpor resembling that of females was observed. Apparently, in both sexes, the reproductive effort entails energetic costs, but torpor, as an energy-saving mechanism, and reproduction are not exclusive in mulgaras. In a resource-poor environment during the least productive part of the year, frequent torpor seems to provide the means to compensate for the increased energetic costs associated with reproduction.  相似文献   

13.
Current theoretical views of the folding process of small proteins (< approximately 100 amino acids) postulate that the landscape of potential mean force (PMF) for the formation of the native state has a funnel shape and that the free energy barrier to folding arises from the chain configurational entropy only. However, recent theoretical studies on the formation of hydrophobic clusters with explicit water suggest that a barrier should exist on the PMF of folding, consistent with the fact that protein folding generally involves a large positive activation enthalpy at room temperature. In addition, high-resolution structural studies of the hidden partially unfolded intermediates have revealed the existence of non-native interactions, suggesting that the correction of the non-native interactions during folding should also lead to barriers on PMF. To explore the effect of a PMF barrier on the folding behavior of proteins, we modified Zwanzig's model for protein folding with an uphill landscape of PMF for the formation of transition states. We found that the modified model for short peptide segments can satisfy the thermodynamic and kinetic criteria for an apparently two-state folding. Since the Levinthal paradox can be solved by a stepwise folding of short peptide segments, a landscape of PMF with a locally uphill search for the transition state and cooperative stabilization of folding intermediates/native state is able to explain the available experimental results for small proteins. We speculate that the existence of cooperative hidden folding intermediates in small proteins could be the consequence of the highly specific structures of the native state, which are selected by evolution to perform specific functions and fold in a biologically meaningful time scale.  相似文献   

14.
The energy requirements of people doing physical work in hot climates are not clearly understood. In particular, we know little about the combined effects of heat stress and muscular work on energy requirements. During military exercises in the African bush soldiers are supplied with standard rations, the adequacy of which is unknown. We have now assessed the adequacy of these food and water rations in 12 male Zimbabwean soldiers during 12 days of strenuous, heat-stress exercise in the field. We used two methods to measure energy expenditure: the double-labelled water method (DLW) and the energy balance method (i.e. comparing dietary energy with changes, if any, in body energy stores). Two groups were studied: one group (eight subjects) carried out field exercises; the control group consisted of four soldiers doing normal work. Mean daily energy expenditure as assessed by the DLW method was [mean (SE)] 23 (1.5) MJ · day−1 for the field group and 14 (0.5) MJ · day−1 for the control group (P<0.001). By the energy balance method, daily energy expenditure was calculated to be 26 (0.7) MJ · day−1 and 15.5 (0.4) MJ · day−1 for the field group and control group, respectively. Body mass loss was 3 (0.1) kg [4.6 (0.3)% of body mass] for the field group, but the control group gained 1.1 (0.1) kg. Mean daily fluid intake was 11 (0.5) 1 · day−1, suggesting that the standard ration supplied was inadequate. Body mass loss was caused by both the energy deficit and total body water loss. These results suggest strenuous work in hot, dry field conditions imposes extra energy requirements. Accepted: 21 January 1997  相似文献   

15.
A brood manipulation experiment on great tits Parus major was performedto study the effects of nestling age and brood size on parentalcare and offspring survival. Daily energy expenditure (DEE)of females feeding nestlings of 6 and 12 days of age was measuredusing the doubly-labeled water technique. Females adjusted theirbrooding behavior to the age of the young. The data are consistentwith the idea that brooding behavior was determined primarilyby the thermoregulatory requirements of the brood. Female DEEdid not differ with nestling age; when differences in body masswere controlled for, it was lower during the brooding periodthan later. In enlarged broods, both parents showed significantlyhigher rates of food provisioning to the brood. Female DEE wasaffected by brood size manipulation, and it did not level offwith brood size. There was no significant effect of nestlingage on the relation between DEE and manipulation. Birds wereable to raise a larger brood than the natural brood size, althoughlarger broods suffered from increased nestling mortality ratesduring the peak demand period of the nestlings. Offspring conditionat fledging was negatively affected by brood size manipulation,but recruitment rate per brood was positively related to broodsize, suggesting that the optimal brood size exceeds the naturalbrood size in this population.  相似文献   

16.
The balance of protein versus lipid reserves utilization in fasting animals depends on their initial adiposity, a high prefasting adiposity being associated with an efficient protein sparing during fasting. Yet it remains unclear if the level of energy expenditure influences the efficiency of body protein sparing. We examined the effect of a high energy demand on body reserve mobilization in barn owls (Tyto alba) fasting in the cold (5 °C). Changes in body composition of captive birds were determined during the three characteristic phases of body fuel utilization of a long-term but reversible fast. Although showing a low prefasting adiposity (12%), barn owls spared body protein in phase II as efficiently as the fattest species (contribution to energy expenditure of <9%). This low protein utilization most probably results from an increased lipid mobilization in the cold. This argues for an influence of a high energy demand on the relative efficiency of protein sparing. For lipids, the pattern of mobilization from tissue sources is similar in barn owls to that of species fasting at thermoneutrality. For proteins, in contrast, and despite a low decrease of the total body protein mass (16%), digestive tract and liver were affected most, with respective losses of 43% and 62% at phase III. This could be another consequence of the interaction between high energy demand in the cold and fasting. Indeed, high cold-induced thermoregulatory needs could result in selective preservation of organs involved in the thermoregulatory process (muscles) to the detriment of lesser solicited organs such as those involved in digestion. Accepted: 8 September 1999  相似文献   

17.
The variation in time and energy allocation of female great tits, Parus major, was studied in five different European populations across a latitudinal gradient. Daily energy expenditure (DEE) was measured in females tending 12-day-old broods. The number of daylight hours used by the parents to collect food for the brood increased with latitude, while DEE and feeding rate per brood tended to level off with latitude. Individual variation in DEE could be explained by variation in ambient temperature (–), the duration of activity period (+) and area, but not by brood size, female body mass, brood mass or feeding rate. When the effect of ambient temperature and the duration of the activity period on the day of energy expenditure measurements were controlled for, female DEE still tended to level off with latitude. Temperature and activity alone can thus not explain the observed pattern. The present study suggests that parents at southern latitudes may be under a time constraint and do not increase energy expenditure because they have no more daylight hours available for foraging, while birds at northern latitudes may be under an energy constraint because they do not make full use of the long daylight period available. Received: 25 May 1999 / Accepted: 08 September 1999  相似文献   

18.
Rose Coloured Starlings (Sturnus roseus) flew repeatedly for several hours in a wind tunnel while undergoing spontaneous variation in body mass. The treatments were as follows: flying unrestrained (U), with a control harness of 1.2% of their body mass (C), or with a harness of 7.4% of their body mass, which was either applied immediately before the flight (LS) or at least 9 days in advance (LL). Energy expenditure during flight (ef in W) was measured with the Doubly Labelled Water method. Flight costs in L(S) and LL were not significantly different and therefore were pooled (L). The harness itself did not affect ef, i.e. U and C flights were not different. ef was allometrically related with body mass m (in g). The slopes were not significantly different between the treatments, but ef was increased by 5.4% in L compared to C flights (log10(ef) = 0.050 + 0.47 x log10(m) for C, and log10(ef) = 0.073 + 0.47 x log10(m) for L). The difference in ef between C, LS and LL was best explained by taking the transported mass m transp (in g) instead of m into account (log10(ef) = -0.08 + 0.54 x log10(m transp)). Flight costs increased to a lesser extent than expected from interspecific allometric comparison or aerodynamic theory, regardless of whether the increase in mass occurred naturally or artificially. We did not observe an effect of treatment on breast muscle size and wingbeat frequency. We propose that the relatively low costs at a high mass are rather a consequence of immediate adjustments in physiology and/or flight behaviour than of long-term adaptations.  相似文献   

19.
The body size of adult Cook Islanders on Rarotonga for the years 1952, 1966 and 1996 has been increasing. The rate of increase in stature of women aged 20-39 years was 0.5cm per decade across the period 1952-1966, and 0.8cm per decade for the period 1966-1996. The rate of increase of weight in the 20-29 years age group was 0.6kg per decade in period 1, and 7.3kg per decade in period 2. In the age group 30-39 years, the rates were 3.2kg per decade and 5.1kg per decade respectively. Changing food availability for the period 1961-2000 is used to compare estimates of dietary energy availability with estimates of physiological energy requirements. There has been reduced availability of traditional staples, a likely reduction in consumption of fish, increased consumption of meat, and a decline in the availability of dietary fats and oils. Daily per capita energy intakes in 1952 and 1966 greatly exceed an hypothetical physiological maximum value for energy expenditure, suggesting a large positive energy balance in 1952 and an even greater one in 1966, both predisposing to weight gain. Although daily per capita energy availability in 1996 is similar to the hypothetical physiological maximum value for energy expenditure, it exceeds the measured level of energy expenditure at that time. It is speculated that excessive energy intake relative to requirement is more likely to predispose to positive energy balance and weight gain than decline in energy expenditure, although to a lower extent than in 1966 and 1952.  相似文献   

20.
The golden spiny mouse (Acomys russatus) is an omnivorous desert rodent that does not store food, but can store large amounts of body fat. Thus, it provides a good animal model to study physiological and behavioural adaptations to changes in food availability. The aim of this study was to investigate the time course of metabolic and behavioural responses to prolonged food restriction. Spiny mice were kept at an ambient temperature of 27°C and for 3 weeks their food was reduced individually to 30% of their previous ad libitum food intake. When fed ad libitum, their average metabolic rate was 82.77±3.72 ml O2 h–1 during the photophase and 111.19±4.30 ml O2 h–1 during the scotophase. During food restriction they displayed episodes of daily torpor when the minimal metabolic rate gradually decreased to 16.07±1.07 ml O2 h–1, i.e. a metabolic rate depression of approximately 83%. During the hypometabolic bouts the minimum average body temperature Tb, decreased gradually from 32.6±0.1°C to 29.0±0.4°C, with increasing duration of consecutive bouts. In parallel, the animals increased their activity during the remaining daytime. Torpor as well as hyperactivity was suppressed immediately by refeeding. Thus golden spiny mice used two simultaneous strategies to adapt to shortened food supply, namely energysaving torpor during their resting period and an increase in locomotor activity pattern during their activity period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号