首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most DNA polymerases incorporate nucleotides opposite template 7,8-dihydro-8-oxoguanine (8-oxoG) lesions with reduced efficiency and accuracy. DNA polymerase (Pol) eta, which catalyzes the error-free replication of template thymine-thymine (TT) dimers, has the unique ability to accurately and efficiently incorporate nucleotides opposite 8-oxoG templates. Here we have used pre-steady-state kinetics to examine the mechanisms of correct and incorrect nucleotide incorporation opposite G and 8-oxoG by Saccharomyces cerevisiae Pol eta. We found that Pol eta binds the incoming correct dCTP opposite both G and 8-oxoG with similar affinities, and it incorporates the correct nucleotide bound opposite both G and 8-oxoG with similar rates. While Pol eta incorporates an incorrect A opposite 8-oxoG with lower efficiency than it incorporates a correct C, it does incorporate A more efficiently opposite 8-oxoG than opposite G. This is mainly due to greater binding affinity for the incorrect incoming dATP opposite 8-oxoG. Overall, these results show that Pol eta replicates through 8-oxoG without any barriers introduced by the presence of the lesion.  相似文献   

2.
Error-free lesion bypass and error-prone lesion bypass are important cellular responses to DNA damage during replication, both of which require a DNA polymerase (Pol). To identify lesion bypass DNA polymerases, we have purified human Polκ encoded by the DINB1 gene and examined its response to damaged DNA templates. Here, we show that human Polκ is a novel lesion bypass polymerase in vitro. Purified human Polκ efficiently bypassed a template 8-oxoguanine, incorporating mainly A and less frequently C opposite the lesion. Human Polκ most frequently incorporated A opposite a template abasic site. Efficient further extension required T as the next template base, and was mediated mainly by a one-nucleotide deletion mechanism. Human Polκ was able to bypass an acetylaminofluorene-modified G in DNA, incorporating either C or T, and less efficiently A opposite the lesion. Furthermore, human Polκ effectively bypassed a template (–)-trans-anti-benzo[a]pyrene-N2-dG lesion in an error-free manner by incorporating a C opposite the bulky adduct. In contrast, human Polκ was unable to bypass a template TT dimer or a TT (6-4) photoproduct, two of the major UV lesions. These results suggest that Polκ plays an important role in both error-free and error-prone lesion bypass in humans.  相似文献   

3.
Human DNA polymerase ι is a lesion bypass polymerase of the Y family, capable of incorporating nucleotides opposite a variety of lesions in both near error-free and error-prone bypass. With undamaged templating purines polymerase ι normally favors Hoogsteen base pairing. Polymerase ι can incorporate nucleotides opposite a benzo[a]pyrene-derived adenine lesion (dA*); while mainly error-free, the identity of misincorporated bases is influenced by local sequence context. We performed molecular modeling and molecular dynamics simulations to elucidate the structural basis for lesion bypass. Our results suggest that hydrogen bonds between the benzo[a]pyrenyl moiety and nearby bases limit the movement of the templating base to maintain the anti glycosidic bond conformation in the binary complex in a 5′-CAGA*TT-3′ sequence. This facilitates correct incorporation of dT via a Watson−Crick pair. In a 5′-TTTA*GA-3′ sequence the lesion does not form these hydrogen bonds, permitting dA* to rotate around the glycosidic bond to syn and incorporate dT via a Hoogsteen pair. With syn dA*, there is also an opportunity for increased misincorporation of dGTP. These results expand our understanding of the versatility and flexibility of polymerase ι and its lesion bypass functions in humans.  相似文献   

4.
7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic DNA lesion. In Saccharomyces cerevisiae, the 8-oxoG DNA N-glycosylase (Ogg1) acts as the primary defense against 8-oxoG. Here, we present evidence for cooperation between Rad18–Rad6-dependent monoubiquitylation of PCNA at K164, the damage-tolerant DNA polymerase η and the mismatch repair system (MMR) to prevent 8-oxoG-induced mutagenesis. Preventing PCNA modification at lysine 164 (pol30-K164R) results in a dramatic increase in GC to TA mutations due to endogenous 8-oxoG in Ogg1-deficient cells. In contrast, deletion of RAD5 or SIZ1 has little effect implying that the modification of PCNA relevant for preventing 8-oxoG-induced mutagenesis is monoubiquitin as opposed to polyubiquitin or SUMO. We also report that the ubiquitin-binding domain (UBZ) of Pol η is essential to prevent 8-oxoG-induced mutagenesis but only in conjunction with a functional PCNA-binding domain (PIP). We propose that PCNA is ubiquitylated during the repair synthesis reaction after the MMR-dependent excision of adenine incorporated opposite to 8-oxoG. Monoubiquitylation of PCNA would favor the recruitment of Pol η thereby allowing error-free incorporation of dCMP opposite to 8-oxoG. This study suggests that Pol η and the post-replication repair (PRR) machinery can also prevent mutagenesis at DNA lesions that do not stall replication forks.  相似文献   

5.
Translesion synthesis (TLS) with specialized DNA polymerases allows dealing with a base lesion on the template strand during DNA replication; a base is inserted opposite the lesion, correctly or incorrectly, depending on the lesion, the involved DNA polymerase(s) and the sequence context. The major oxidized DNA base 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) is highly mutagenic due to its ability to pair with either cytosine or adenine during DNA synthesis, depending on its conformation and involved DNA polymerases. To measure the correct or mutagenic outcome of lesion bypass, an original quantitative pyrosequencing method was developed and analytically validated. The method was applied to the study of DNA synthesis fidelity through an 8-oxodG or an undamaged guanine. After an in vitro primer-extension through 8-oxodG in the presence of the four deoxynucleotides triphosphates and a total nuclear protein extract, obtained from normal human intestinal epithelial cells (FHs 74 Int cell line), the reaction products were amplified by polymerase chain reaction and analyzed by pyrosequencing to measure nucleotides inserted opposite the lesion. The 8-oxodG bypass fidelity of FHs 74 Int cells nuclear extract is about 85.3%. We calculated within-day and total precisions for both 8-oxodG (2.8% and 2.8%, respectively) and undamaged templates (1.0% and 1.1%, respectively). We also demonstrated that only cytosine is incorporated opposite a normal guanine and that both cytosine and adenine can be incorporated opposite an 8-oxodG lesion. The proposed method is straightforward, fast, reproducible and easily adaptable to other sequences and lesions. It thus has a wide range of applications in the biological field, notably to elucidate TLS mechanisms and modulators.  相似文献   

6.
N1-methyl adenine (1-MeA) is formed in DNA by reaction with alkylating agents and naturally occurring methyl halides. The 1-MeA lesion impairs Watson-Crick base pairing and blocks normal DNA replication. Here we identify the translesion synthesis (TLS) DNA polymerases (Pols) required for replicating through 1-MeA in human cells and show that TLS through this lesion is mediated via three different pathways in which Pols ι and θ function in one pathway and Pols η and ζ, respectively, function in the other two pathways. Our biochemical studies indicate that in the Polι/Polθ pathway, Polι would carry out nucleotide insertion opposite 1-MeA from which Polθ would extend synthesis. In the Polη pathway, this Pol alone would function at both the nucleotide insertion and extension steps of TLS, and in the third pathway, Polζ would extend from the nucleotide inserted opposite 1-MeA by an as yet unidentified Pol. Whereas by pushing 1-MeA into the syn conformation and by forming Hoogsteen base pair with the T residue, Polι would carry out TLS opposite 1-MeA, the ability of Polη to replicate through 1-MeA suggests that despite its need for Watson-Crick hydrogen bonding, Polη can stabilize the adduct in its active site. Remarkably, even though Pols η and ι are quite error-prone at inserting nucleotides opposite 1-MeA, TLS opposite this lesion in human cells occurs in a highly error-free fashion. This suggests that the in vivo fidelity of TLS Pols is regulated by factors such as post-translational modifications, protein-protein interactions, and possibly others.  相似文献   

7.
Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol ι encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol η. To investigate whether human Pol ι plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol ι. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol ι, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol ι efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol ι was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol ι responded to a template TT (6–4) photoproduct by inserting predominantly an A opposite the 3′ T of the lesion before aborting DNA synthesis. In contrast, human Pol ι was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol ι in DNA lesion bypass.  相似文献   

8.
8-oxo-7,8-dihydro-2′-deoxyguanosine (8oxodG) is a major lesion resulting from oxidative stress and found in both DNA and dNTP pools. Such a lesion is usually removed from DNA by the Base Excision Repair (BER), a universally conserved DNA repair pathway. 8oxodG usually adopts the favored and promutagenic syn-conformation at the active site of DNA polymerases, allowing the base to hydrogen bonding with adenine during DNA synthesis. Here, we study the structural determinants that affect the glycosidic torsion-angle of 8oxodGTP at the catalytic active site of the family X DNA polymerase from Bacillus subtilis (PolXBs). We show that, unlike most DNA polymerases, PolXBs exhibits a similar efficiency to stabilize the anti and syn conformation of 8oxodGTP at the catalytic site. Kinetic analyses indicate that at least two conserved residues of the nucleotide binding pocket play opposite roles in the anti/syn conformation selectivity, Asn263 and His255 that favor incorporation of 8oxodGMP opposite dA and dC, respectively. In addition, the presence in PolXBs of Mn2+-dependent 3′-phosphatase and 3′-phosphodiesterase activities is also shown. Those activities rely on the catalytic center of the C-terminal Polymerase and Histidinol Phosphatase (PHP) domain of PolXBs and, together with its 3′-5′ exonuclease activity allows the enzyme to resume gap-filling after processing of damaged 3′ termini.  相似文献   

9.
Human DNA Pol κ is a polymerase enzyme, specialized for near error-free bypass of certain bulky chemical lesions to DNA that are derived from environmental carcinogens present in tobacco smoke, automobile exhaust and cooked food. By employing ab initio QM/MM–MD (Quantum Mechanics/Molecular Mechanics–Molecular Dynamics) simulations with umbrella sampling, we have determined the entire free energy profile of the nucleotidyl transfer reaction catalyzed by Pol κ and provided detailed mechanistic insights. Our results show that a variant of the Water Mediated and Substrate Assisted (WMSA) mechanism that we previously deduced for Dpo4 and T7 DNA polymerases is preferred for Pol κ as well, suggesting its broad applicability. The hydrogen on the 3′-OH primer terminus is transferred through crystal and solvent waters to the γ-phosphate of the dNTP, followed by the associative nucleotidyl transfer reaction; this is facilitated by a proton transfer from the γ-phosphate to the α,β-bridging oxygen as pyrophosphate leaves, to neutralize the evolving negative charge. MD simulations show that the near error-free incorporation of dCTP opposite the major benzo[a]pyrene—derived dG lesion is compatible with the WMSA mechanism, allowing for an essentially undisturbed pentacovalent phosphorane transition state, and explaining the bypass of this lesion with little mutation by Pol κ.  相似文献   

10.
A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols δ and η. Yeast Pol δ and yeast Pol η both bypass 8-oxoG and misincorporate adenine during bypass. However, yeast Pol η is 10-fold more efficient than Pol δ, and following bypass Pol η switches to less processive synthesis, similar to that observed during bypass of a cis-syn thymine-thymine dimer. Moreover, yeast Pol η is at least 10-fold more accurate than yeast Pol δ during 8-oxoG bypass. These differences are maintained in the presence of the accessory proteins RFC, PCNA and RPA and are consistent with the established role of Pol η in suppressing ogg1-dependent mutagenesis in yeast. Surprisingly different results are obtained with human and mouse Pol η. Both mammalian enzymes bypass 8-oxoG efficiently, but they do so less processively, without a switch point and with much lower fidelity than yeast Pol η. The fact that yeast and mammalian Pol η have intrinsically different catalytic properties has potential biological implications.  相似文献   

11.
Human DNA polymerase iota (pol(iota)) is a recently discovered enzyme that exhibits extremely low fidelity on undamaged DNA templates. Here, we show that poliota is able to facilitate limited translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). More importantly, however, the bypass event is highly erroneous. Gel kinetic assays reveal that pol(iota) misinserts T or G opposite the 3' T of the CPD approximately 1.5 times more frequently than the correct base, A. While pol(iota) is unable to extend the T.T mispair significantly, the G.T mispair is extended and the lesion completely bypassed, with the same efficiency as that of the correctly paired A. T base pair. By comparison, pol(iota) readily misinserts two bases opposite a 6-4 thymine-thymine pyrimidine-pyrimidone photoproduct (6-4PP), but complete lesion bypass is only a fraction of that observed with the CPD. Our data indicate, therefore, that poliota possesses the ability to insert nucleotides opposite UV photoproducts as well as to perform unassisted translesion replication that is likely to be highly mutagenic.  相似文献   

12.
DNA double-strand breaks (DSBs) are one of the most dangerous DNA lesions, since their erroneous repair by nonhomologous end-joining (NHEJ) can generate harmful chromosomal rearrangements. PolX DNA polymerases are well suited to extend DSB ends that cannot be directly ligated due to their particular ability to bind to and insert nucleotides at the imperfect template-primer structures formed during NHEJ. Herein, we have devised genetic assays in yeast to induce simultaneous DSBs in different chromosomes in vivo. The repair of these breaks in trans could result in reciprocal chromosomal translocations that were dependent on classical Ku-dependent NHEJ. End-joining events leading to translocations were mainly based on the formation of short base pairing between 3′-overhanging DNA ends coupled to gap-filling DNA synthesis. A major proportion of these events were specifically dependent on yeast DNA polymerase Pol4 activity. In addition, we have discovered that Pol4-Thr540 amino acid residue can be phosphorylated by Tel1/ATM kinase, which could modulate Pol4 activity during NHEJ. Our data suggest that the role of Tel1 in preventing break-induced chromosomal translocations can, to some extent, be due to its stimulating effect on gap-filling activity of Pol4 to repair DSBs in cis. Overall, this work provides further insight to the molecular mechanisms of DSB repair by NHEJ and presents a new perspective to the understanding of how chromosomal translocations are formed in eukaryotic cells.  相似文献   

13.
Genetic studies in Saccharomyces cerevisiae have indicated the requirement of DNA polymerase (Pol) zeta for mutagenesis induced by UV light and by other DNA damaging agents. However, on its own, Pol zeta is highly inefficient at replicating through DNA lesions; rather, it promotes their mutagenic bypass by extending from the nucleotide inserted opposite the lesion by another DNA polymerase. So far, such a role for Pol zeta has been established for cyclobutane pyrimidine dimers, (6-4) dipyrimidine photoproducts, and abasic sites. Here, we examine whether Pol zeta can replicate through the 7,8-dihydro-8-oxoguanine (8-oxoG) and O(6)-methylguanine (m6G) lesions. We chose these two lesions for this study because the replicative polymerase, Pol delta, can replicate through them, albeit weakly. We found that Pol zeta is very inefficient at inserting nucleotides opposite both these lesions, but it can efficiently extend from the nucleotides inserted opposite them by Pol delta. Also, the most efficient bypass of 8-oxoG and m6G lesions occurs when Pol delta is combined with Pol zeta, indicating a role for Polzeta in extending from the nucleotides inserted opposite these lesions by Pol delta. Thus, Pol zeta is a highly specialized polymerase that can proficiently extend from the primer ends opposite DNA lesions, irrespective of their degree of geometric distortion. Pol zeta, however, is unusually sensitive to geometric distortion of the templating residue, as it is highly inefficient at incorporating nucleotides even opposite the moderately distorting 8-oxoG and m6G lesions.  相似文献   

14.
As predicted by the amino acid sequence, the purified protein coded by Schizosaccharomyces pombe SPAC2F7.06c is a DNA polymerase (SpPol4) whose biochemical properties resemble those of other X family (PolX) members. Thus, this new PolX is template-dependent, polymerizes in a distributive manner, lacks a detectable 3′→5′ proofreading activity and its preferred substrates are small gaps with a 5′-phosphate group. Similarly to Polμ, SpPol4 can incorporate a ribonucleotide (rNTP) into a primer DNA. However, it is not responsible for the 1–2 rNTPs proposed to be present at the mating-type locus and those necessary for mating-type switching. Unlike Polμ, SpPol4 lacks terminal deoxynucleotidyltransferase activity and realigns the primer terminus to alternative template bases only under certain sequence contexts and, therefore, it is less error-prone than Polμ. Nonetheless, the biochemical properties of this gap-filling DNA polymerase are suitable for a possible role of SpPol4 in non-homologous end-joining. Unexpectedly based on sequence analysis, SpPol4 has deoxyribose phosphate lyase activity like Polβ and Polλ, and unlike Polμ, suggesting also a role of this enzyme in base excision repair. Therefore, SpPol4 is a unique enzyme whose enzymatic properties are hybrid of those described for mammalian Polβ, Polλ and Polμ.  相似文献   

15.
7,8-dihydro-8-oxoguanine (8-oxoG) adducts are formed frequently by the attack of oxygen-free radicals on DNA. They are among the most mutagenic lesions in cells because of their dual coding potential, where, in addition to normal base-pairing of 8-oxoG(anti) with dCTP, 8-oxoG in the syn conformation can base pair with dATP, causing G to T transversions. We provide here for the first time a structural basis for the error-free replication of 8-oxoG lesions by yeast DNA polymerase η (Polη). We show that the open active site cleft of Polη can accommodate an 8-oxoG lesion in the anti conformation with only minimal changes to the polymerase and the bound DNA: at both the insertion and post-insertion steps of lesion bypass. Importantly, the active site geometry remains the same as in the undamaged complex and provides a basis for the ability of Polη to prevent the mutagenic replication of 8-oxoG lesions in cells.  相似文献   

16.
DNA polymerase eta (Pol(eta), xeroderma pigmentosum variant, or Rad30) plays an important role in an error-free response to unrepaired UV damage during replication. It faithfully synthesizes DNA opposite a thymine-thymine cis-syn-cyclobutane dimer. We have purified the yeast Pol(eta) and studied its lesion bypass activity in vitro with various types of DNA damage. The yeast Pol(eta) lacked a nuclease or a proofreading activity. It efficiently bypassed 8-oxoguanine, incorporating C, A, and G opposite the lesion with a relative efficiency of approximately 100:56:14, respectively. The yeast Pol(eta) efficiently incorporated a C opposite an acetylaminofluorene-modified G, and efficiently inserted a G or less frequently an A opposite an apurinic/apyrimidinic (AP) site but was unable to extend the DNA synthesis further in both cases. However, some continued DNA synthesis was observed in the presence of the yeast Pol(zeta) following the Pol(eta) action opposite an AP site, achieving true lesion bypass. In contrast, the yeast Pol(alpha) was able to bypass efficiently a template AP site, predominantly incorporating an A residue opposite the lesion. These results suggest that other than UV damage, Pol(eta) may also play a role in bypassing additional DNA lesions, some of which can be error-prone.  相似文献   

17.
Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function.  相似文献   

18.
Replication of genomes that contain blocking DNA lesions entails the transient replacement of the replicative DNA polymerase (Pol) by a polymerase specialized in lesion bypass. Here, we isolate and visualize at nucleotide resolution level, replication intermediates formed during lesion bypass of a single N-2-acetylaminofluorene-guanine adduct (G-AAF) in vivo. In a wild-type strain, a ladder of replication intermediates mapping from one to four nucleotides upstream of the lesion site, can be observed. In proofreading-deficient strains (mutD5 or dnaQ49), these replication intermediates disappear, thus assigning the degradation ladder to the polymerase-associated exonuclease activity. Moreover, in mutD5, a new band corresponding to the insertion of a nucleotide opposite to the lesion site is observed, suggesting that the polymerase and exonuclease activities of native Pol III enter a futile insertion-excision cycle that prevents translesion synthesis. The bypass of the G-AAF adduct located within the NarI sequence context requires the induction of the SOS response and involves either Pol V or Pol II in an error-free or a frameshift pathway, respectively. In the frameshift mutation pathway, inactivation of the proofreading activity obviates the need for SOS induction but nonetheless necessitates a functional polB gene, suggesting that, although proofreading-deficient Pol III incorporates a nucleotide opposite G-AAF, further extension still requires Pol II. These data are corroborated using a colony-based bypass assay.  相似文献   

19.
3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4.  相似文献   

20.
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号