首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cytochrome P450 and UDP-glucosyltransferase (UGT) as phase I and phase II metabolism enzymes, respectively, play vital roles in the breakdown of endobiotics and xenobiotics. Insects can in crease the expression of detoxificatio n enzymes to cope with the stress from xenobiotics including insecticides. However, the molecular mechanisms for insecticide detoxification in Spodoptera exigua remain elusive, and the genes conferring insecticide metabolisms in this species are less well reported. In this study, 68 P450 and 32 UGT genes were identified. Phylogenetic analysis showed gene expansions in CYP3 and CYP4 clans of P450 genes and UGT33 family of this pest. P450 and UGT genes exhibited specific tissue expression patterns. Insecticide treatments in fat body cells of S. exigua revealed that the expression levels of P450 and UGT genes were significantly influenced by challenges of abamectin, lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb. Multiple genes for detoxification were affected in expression levels after insecticide exposures. The results demonstrated that lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb induced similar responses in the expression of P450 and UGT genes in fat body cells;eight P450 genes and four UGT genes were co-up-regulated significantly, and no or only a few CYP/UGT genes were down-regulated significantly by these four insecticides. However, abamectin triggered a distinct response for P450 and UGT gene expression;more P450 and UGT genes were down-regulated by abamectin than by the other four compounds. In con elusion, P450 and UGT genes from S. exigua were identified, and different responses to abamectin suggest a different mechanism for insecticide detoxification.  相似文献   

2.
The effect of xenobiotics (phenobarbital and atrazine) on the expression of Drosophila melanogaster CYP genes encoding cytochromes P450, a gene family generally associated with detoxification, was analyzed by DNA microarray hybridization and verified by real-time RT-PCR in adults of both sexes. Only a small subset of the 86 CYP genes was significantly induced by the xenobiotics. Eleven CYP genes and three glutathione S-transferases (GST) genes were significantly induced by phenobarbital, seven CYP and one GST gene were induced by atrazine. Cyp6d5, Cyp6w1, Cyp12d1 and the ecdysone-inducible Cyp6a2 were induced by both chemicals. The constitutive expression of several of the inducible genes (Cyp6a2, Cyp6a8, Cyp6d5, Cyp12d1) was higher in males than in females, and the induced level similar in both sexes. Thus, the level of induction was consistently higher in females than in males. The female-specific and hormonally regulated yolk protein genes were significantly induced by phenobarbital in males and repressed by atrazine in females. Our results suggest that the numerous CYP genes of Drosophila respond selectively to xenobiotics, providing the fly with an adaptive response to chemically adverse environments. The xenobiotic inducibility of some CYP genes previously associated with insecticide resistance in laboratory-selected strains (Cyp6a2, Cyp6a8, Cyp12d1) suggests that deregulation of P450 gene expression may be a facile way to achieve resistance. Our study also suggests that xenobiotic-induced changes in P450 levels can affect insect fitness by interfering with hormonally regulated networks.  相似文献   

3.
4.
Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process – carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) – are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.  相似文献   

5.
6.
Ethanol is a widely consumed and rapidly absorbed toxin. While the physiological effects of ethanol consumption are well known, the underlying biochemical and molecular changes at the gene expression level in whole animals remain obscure. We exposed the model organism Caenorhabditis elegans to 0.2 M ethanol from the embryo to L4 larva stage and assayed gene expression changes in whole animals using RNA‐Seq and quantitative real‐time PCR. We observed gene expression changes in 1122 genes (411 up, 711 down). Cytochrome P‐450 (CYP) gene family members (12 of 78) were upregulated, whereas activated in blocked unfolded protein response (ABU) (7 of 15) were downregulated. Other detoxification gene family members were also regulated including four glutathione‐S‐transferases and three flavin monooxygenases. The results presented show specific gene expression changes following chronic ethanol exposure in C. elegans that indicate both persistent upregulation of detoxification response genes and downregulation of endoplasmic reticulum stress pathway genes.  相似文献   

7.
Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over‐expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85), and in N. lugens among three IMI doses (LD15, LD50 and LD85). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up‐regulation of nine genes and down‐regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up‐regulation in seven genes, down‐regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up‐regulation in four genes at all doses and dose‐dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up‐regulated by the LD50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose‐dependent.  相似文献   

8.
【目的】建立苹小卷叶蛾Adoxophyes orana转录组数据库,挖掘杀虫剂靶标及解毒代谢相关基因。【方法】采用Illumina HiSeq~(TM) 2000高通量测序技术对苹小卷叶蛾进行转录组测序,挖掘并分析杀虫剂靶标基因;利用qPCR检测6个杀虫剂靶标基因在苹小卷叶蛾卵、幼虫、蛹和成虫各不同发育阶段的表达;挖掘并分析苹小卷叶蛾转录组中解毒代谢相关基因的代谢通路及进化关系。【结果】通过组装有效序列共获得48 610条unigene(GenBank登录号:GGMW00000000)。挖掘鉴定到155个杀虫剂靶标unigene;qPCR结果显示,1个蜕皮激素受体(ecdysone receptor, ECR)、2个乙酰胆碱酯酶(acetylcholinesterase, AChE)、1个氯离子通道蛋白(chloride channel, CLC)、1个几丁质酶(chitinase, CS)和1个鱼尼丁受体(ryanodine receptor, RyR)基因在苹小卷叶蛾不同发育阶段均存在表达差异。挖掘鉴定到69个羧酸酯酶(carboxylesterase, CarE)unigene、66个谷胱甘肽S-转移酶(glutathion S-transferase, GST)unigene和205个细胞色素P450(cytochrome P450)unigene等解毒代谢相关基因,共鉴定20个CarE unigene, 32个GST unigene和30个P450 unigene与有毒物质代谢相关的通路有关。基于氨基酸序列对具有完整ORF的unigene聚类分析结果显示:12个CarEs中9个为G类,即鳞翅目保幼激素类;分别有10个AoGSTs属于Delta和Epsilon亚家族;18个P450全部聚到CYP3集团。【结论】该研究有助于苹小卷叶蛾杀虫剂靶标基因的挖掘及抗药性的研究。  相似文献   

9.
The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.  相似文献   

10.
[目的]葡萄花翅小卷蛾是我国重要的检疫性害虫,一旦入侵我国,将会对我国葡萄产业和林果业生产造成严重损失,国外主要使用化学农药防治该虫.开展葡萄花翅小卷蛾转录组测序及体内细胞色素P450单加氧酶(cytochrome P450 monooxygenase,CYP)、羧酸酯酶(carboxylesterase,CarE)和...  相似文献   

11.

Background

Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies.

Results

The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study.

Conclusion

Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450 genes in response to insecticide treatment, detoxification of insecticides, the adaptation of insects to their environment, and the evolution of insecticide resistance.  相似文献   

12.
13.
14.
15.
16.
Across insect genomes, the size of the cytochrome P450 monooxygenase (CYP) gene superfamily varies widely. CYPome size variation has been attributed to reciprocal adaptive radiations in insect detoxification genes in response to plant biosynthetic gene radiations driven by co‐evolution between herbivores and their chemically defended hostplants. Alternatively, variation in CYPome size may be due to random “birth‐and‐death” processes, whereby exponential increase via gene duplications is limited by random decay via gene death or transition via divergence. We examined CYPome diversification in the genomes of seven Lepidoptera species varying in host breadth from monophagous (Bombyx mori) to highly polyphagous (Amyelois transitella). CYPome size largely reflects the size of Clan 3, the clan associated with xenobiotic detoxification, and to some extent phylogenetic age. Consistently across genomes, families CYP6, CYP9 and CYP321 are most diverse and CYP6AB, CYP6AE, CYP6B, CYP9A and CYP9G are most diverse among subfamilies. Higher gene number in subfamilies is due to duplications occurring primarily after speciation and specialization (“P450 blooms”), and the genes are arranged in clusters, indicative of active duplicating loci. In the parsnip webworm, Depressaria pastinacella, gene expression levels in large subfamilies are high relative to smaller subfamilies. Functional and phylogenetic data suggest a correlation between highly dynamic loci (reflective of extensive gene duplication, functionalization and in some cases loss) and the ability of enzymes encoded by these genes to metabolize hostplant defences, consistent with an adaptive, nonrandom process driven by ecological interactions.  相似文献   

17.
Genomic analysis of detoxification genes in the mosquito Aedes aegypti   总被引:5,自引:0,他引:5  
Annotation of the recently determined genome sequence of the major dengue vector, Aedes aegypti, reveals an abundance of detoxification genes. Here, we report the presence of 235 members of the cytochrome P450, glutathione transferase and carboxy/cholinesterase families in Ae. aegypti. This gene count represents an increase of 58% and 36% compared with the fruitfly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. The expansion is not uniform within the gene families. Secure orthologs can be found across the insect species for enzymes that have presumed or proven biosynthetic or housekeeping roles. In contrast, subsets of these gene families that are associated with general xenobiotic detoxification, in particular the CYP6, CYP9 and alpha esterase families, have expanded in Ae. aegypti. In order to identify detoxification genes associated with resistance to insecticides we constructed an array containing unique oligonucleotide probes for these genes and compared their expression level in insecticide resistant and susceptible strains. Several candidate genes were identified with the majority belonging to two gene families, the CYP9 P450s and the Epsilon GSTs. This 'Ae. aegypti Detox Chip' will facilitate the implementation of insecticide resistance management strategies for arboviral control programmes.  相似文献   

18.
草地贪夜蛾Spodoptera frugiperda近期在中国为害猖獗,由于繁殖速度快,迁飞能力强,在本土呈现爆发趋势,严重为害了我国农作物。与本地近缘物种斜纹夜蛾Spodoptera litura相比,草地贪夜蛾更偏好玉米、水稻、小麦等禾本科农作物,且对多种化学杀虫剂及转基因Bt玉米产生抗性。寄主适应性以及杀虫剂抗性与解毒代谢相关蛋白密切相关。因此,本研究对这两种夜蛾科害虫的解毒代谢相关蛋白——细胞色素P450、谷胱甘肽转移酶(GST)及ABC转运蛋白进行了全基因组水平系统的搜集和数目比较,构建系统发育树并对P450和GST部分基因扩张分支进行氨基酸差异位点分析。结果显示,在草地贪夜蛾中共鉴定出213个P450基因、58个GST基因、102个ABC基因,其中P450基因与GST基因数目远远多于斜纹夜蛾(116,37),而ABC基因数目与斜纹夜蛾(99)接近。系统发育树分析表明,草地贪夜蛾P450在CYP6、CYP9以及CYP4功能簇,GST在部分进化分支上都发生了显著基因扩张,发生显著扩张的基因中有数个氨基酸突变,其中一些突变被预测可能影响蛋白质功能。但出乎意料的是,ABC亚家族B和E在斜纹夜蛾聚集成簇并发生了显著的基因扩张现象。以上结果暗示入侵种草地贪夜蛾和本地近缘物种斜纹夜蛾在抗性方面可能发展出各自独特的应对机制。本研究为解析草地贪夜蛾解毒抗性特征机制提供基因数据,为草地贪夜蛾的生物防治及抗性研究提供参考依据。  相似文献   

19.
Cytochrome P450 family members participate in xenobiotic transformation as a detoxification mechanism. We have characterized a CYP gene, assigned to the 4G family, in Chironomus riparius, a reference organism in aquatic toxicology. Due to the potential interest of CYP genes and P450 proteins for monitoring pollution effects at the molecular level, the alterations in the pattern of expression of this gene, induced by different xenobiotics, were analyzed. Different compounds, such as the biocide tributyltin (TBTO) and two other well-known endocrine disruptors, nonylphenol (NP) and bisphenol A (BPA), were tested at different concentrations and acute exposures. Upregulation of the CrCYP4G gene was found after exposures to TBTO (1 ng/L 24h-0.1 ng/L 96 h) and, as measured by RT-PCR mRNA quantification, its level was up to twofold that of controls. However, in contrast, NP (1, 10, 100 μg/L, 24h) and BPA (0.5mg/L 24h-3mg/L 96 h) downregulated the gene (by around a half of the control level) suggesting that this gene responds specifically to particular chemicals in the environment. Glutathione-S-transferase (GST) enzymatic activity was also evaluated for each condition. A fairly good correlation was found with CYP4G gene behavior, as it was activated by TBTO (96 h), but inhibited by NP and BPA (24h). Only the higher concentration of BPA tested activated GST, whereas it inhibited CYP4G activity. The results show that different xenobiotics can induce distinct responses in the detoxification pathway, suggesting multiple xenobiotic transduction mechanisms. This work confirms that specific P450 codifying genes, as well as GST enzyme activities, could be suitable biomarkers for ecotoxicological studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号