首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human brain cellular prion protein (PrP(c)) is cleaved within its highly conserved domain at amino acid 110/111/112. This cleavage generates a highly stable C-terminal fragment (C1). We examined the relative abundance of holo- and truncated PrP(c) in human cerebral cortex and we found important inter-individual variations in the proportion of C1. Neither age nor postmortem interval explain the large variability observed in C1 amount. Interestingly, our results show that high levels of C1 are associated with the presence of the active ADAM 10 suggesting this zinc metalloprotease as a candidate for the cleavage of PrP(c) in the human brain.  相似文献   

2.
α1-Antichymotrypsin (α1-ACT) belongs to a kind of acute-phase inflammatory protein. Recently, such protein has been proved exist in the amyloid deposits which is the hallmark of Alzheimer's disease, but limitedly reported in prion disease. To estimate the change of α1-ACT during prion infection, the levels of α1-ACT in the brain tissues of scrapie agents 263K-, 139A- and ME7-infected rodents were analyzed, respectively. Results shown that α1-ACT levels were significantly increased in the brain tissues of the three kinds of scrapie-infected rodents, displaying a time-dependent manner during prion infection. Immunohistochemistry assays revealed the increased α1-ACT mainly accumulated in some cerebral regions of rodents infected with prion, such as cortex, thalamus and cerebellum. Immunofluorescent assays illustrated ubiquitously localization of α1-ACT with GFAP positive astrocytes, Iba1-positive microglia and NeuN-positive neurons. Moreover, double-stained immunofluorescent assays and immunohistochemistry assays using series of brain slices demonstrated close morphological colocalization of α1-ACT signals with that of PrP and PrPSc in the brain slices of 263K-infected hamster. However, co-immunoprecipitation does not identify any detectable molecular interaction between the endogenous α1-ACT and PrP either in the brain homogenates of 263K-infected hamsters or in the lysates of prion-infected cultured cells. Our data here imply that brain α1-ACT is increased abnormally in various scrapie-infected rodent models. Direct molecular interaction between α1-ACT and PrP seems not to be essential for the morphological colocalization of those two proteins in the brain tissues of prion infection.  相似文献   

3.
Microtubule-associated protein tau is considered to play roles in many neurodegenerative diseases including some transmissible spongiform encephalopathies. To address the possible molecular linkage of prion protein (PrP) and tau, a GST-fusion segment of human tau covering the three-repeat region and various PrP segments was used in the tests of GST pull-down and immunoprecipitation. We found tau protein interacted with various style prion proteins such as native prion protein (PrPC) or protease-resistant isoform (prpSc). Co-localization signals of tau and PrP were found in the CHO cell tranfected with both PrP and tau gene. The domain of interaction with tau was located at N-terminal of PrP (residues 23 to 91). The evidence of molecular interactions between PrP and tau protein highlights a potential role of tau in the biological function of PrP and the pathogenesis of TSEs.  相似文献   

4.
A key molecular event in prion diseases is the conversion of cellular prion protein (PrP(c)) into an abnormal misfolded conformer (PrP(sc)). The PrP(c) N-terminal domain plays a central role in PrP(c) functions and in prion propagation. Because mammalian PrP(c) is found as a full-length and N-terminally truncated form, we examined the presence and amount of PrP(c) C-terminal fragment in the brain of different species. We found important variations between primates and rodents. In addition, our data show that the PrP(c) fragment is present in detergent-resistant raft domains, a membrane domain of critical importance for PrP(c) functions and its conversion into PrP(sc).  相似文献   

5.
Microtubule-associated protein tau is considered to play roles in many neurodegenera-tive diseases including some transmissible spongiform encephalopathies.To address the possible molecular linkage of prion protein(PrP) and tau,a GST-fusion segment of human tau covering the three-repeat region and various PrP segments was used in the tests of GST pull-down and immuno-precipitation.We found tau protein interacted with various style prion proteins such as native prion protein(PrPC) or protease-resistant isoform(PrPSc) .Co-localization signals of tau and PrP were found in the CHO cell tranfected with both PrP and tau gene.The domain of interaction with tau was located at N-terminal of PrP(residues 23 to 91) .The evidence of molecular interactions between PrP and tau protein highlights a potential role of tau in the biological function of PrP and the pathogenesis of TSEs.  相似文献   

6.
In prion disease, the abnormal conformer of the cellular prion protein, PrP(Sc), deposits in fibrillar protein aggregates in brain and other organs. Limited exposure of PrP(Sc) to proteolytic digestion in vitro generates a core fragment of 19-21 kDa, named PrP27-30, which is also found in vivo. Recent evidence indicates that abnormal truncated fragments other than PrP27-30 may form in prion disease either in vivo or in vitro. We characterized a novel protease-resistant PrP fragment migrating 2-3 kDa faster than PrP27-30 in Creutzfeldt-Jakob disease (CJD) brains. The fragment has a size of about 18.5 kDa when associated with PrP27-30 type 1 (21 kDa) and of 17 kDa when associated with type 2 (19 kDa). Molecular mass and epitope mapping showed that the two fragments share the primary N-terminal sequence with PrP27-30 types 1 and 2, respectively, but lack a few amino acids at the very end of C terminus together with the glycosylphosphatidylinositol anchor. The amounts of the 18.5- or 17-kDa fragments and the previously described 13-kDa PrP(Sc) C-terminal fragment relatively to the PrP27-30 signal significantly differed among CJD subtypes. Furthermore, protease digestion of PrP(Sc) or PrP27-30 in partially denaturing conditions generated an additional truncated fragment of about 16 kDa only in typical sporadic CJD (i.e. MM1). These results show that the physicochemical heterogeneity of PrP(Sc) in CJD extends to abnormal truncated forms of the protein. The findings support the notion of distinct structural "conformers" of PrP(Sc) and indicate that the characterization of truncated PrP(Sc) forms may further improve molecular typing in CJD.  相似文献   

7.
Mammalian prions     
Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.  相似文献   

8.
Because of high tendency of the prion protein (PrP) to aggregate, the exact PrP isoform responsible for prion diseases as well as the pathological mechanism that it activates remains still controversial. In this study, we show that a pre-fibrillar, monomeric or small oligomeric conformation of the human PrP fragment 90–231 (hPrP90–231), rather than soluble or fibrillar large aggregates, represents the neurotoxic species. In particular, we demonstrate that monomeric mild-denatured hPrP90–231 (incubated for 1 h at 53°C) induces SH-SY5Y neuroblastoma cell death, while, when structured in large aggregates, it is ineffective. Using spectroscopic and cellular techniques we demonstrate that this toxic conformer is characterized by a high exposure of hydrophobic regions that favors the intracellular accumulation of the protein. Inside the cells hPrP90–231 is mainly compartmentalized into the lysosomes where it may trigger pro-apoptotic 'cell death' signals. The PrP toxic conformation, which we have obtained inducing a controlled in vitro conformational change of the protein, might mimic mild-unfolding events occurring in vivo, in the presence of specific mutations, oxidative reactions or proteolysis. Thus, in light of this model, we propose that novel therapeutic strategies, designed to inhibit the interaction of the toxic PrP with the plasmamembrane, could be beneficial to prevent the formation of intracellular neurotoxic aggregates and ultimately the neuronal death.  相似文献   

9.
It is well established that natural polymorphisms in the coding sequence of the PrP protein can control the expression of prion disease. Studies with a cell model of sheep prion infection have shown that ovine PrP allele associated with resistance to sheep scrapie may confer resistance by impairing the multiplication of the infectious agent. To further explore the biochemical and cellular mechanisms underlying the genetic control of scrapie susceptibility, we established permissive cells expressing two different PrP variants. In this study, we show that PrP variants with opposite effects on prion multiplication exhibit distinct cell biological features. These findings indicate that cell biological properties of ovine PrP can vary with natural polymorphisms and raise the possibility that differential interactions of PrP variants with the cellular machinery may contribute to permissiveness or resistance to prion multiplication.  相似文献   

10.
Levy Y  Becker OM 《Proteins》2002,47(4):458-468
Conformational transitions are thought to be the prime mechanism of prion diseases. In this study, the energy landscapes of a wild-type prion protein (PrP) and the D178N and E200K mutant proteins were mapped, enabling the characterization of the normal isoforms (PrP(C)) and partially unfolded isoforms (PrP(PU)) of the three prion protein analogs. It was found that the three energy landscapes differ in three respects: (i) the relative stability of the PrP(C) and the PrP(PU) states, (ii) the transition pathways from PrP(C) to PrP(PU), and (iii) the relative stability of the three helices in the PrP(C) state. In particular, it was found that although helix 1 (residues 144-156) is the most stable helix in wild-type PrP, its stability is dramatically reduced by both mutations. This destabilization is due to changes in the charge distribution that affects the internal salt bridges responsible for the greater stability of this helix in wild-type PrP. Although both mutations result in similar destabilization of helix 1, they a have different effect on the overall stability of PrP(C) and of PrP(PU) isoforms and on structural properties. The destabilization of helix 1 by mutations provides additional evidences to the role of this helix in the pathogenic transition from the PrP(C) to the pathogenic isoform PrP(SC).  相似文献   

11.
Prion diseases appear to be caused by the aggregation of the cellular prion protein (PrP(C)) into an infectious form denoted PrP(Sc). The in vitro aggregation of the prion protein has been extensively investigated, yet many of these studies utilize truncated polypeptides. Because the C-terminal portion of PrP(Sc) is protease-resistant and retains infectivity, it is assumed that studies on this fragment are most relevant. The full-length protein can be distinguished from the truncated protein because it contains a largely structured, alpha-helical, C-terminal region in addition to an N terminus that is unstructured in the absence of metal ion binding. Herein, the in vitro aggregation of a truncated portion of the prion protein (PrP 90-231) and a full-length version (PrP 23-231) were compared. In each case, concentration-dependent aggregation was analyzed to discern whether it proceeds by a nucleation-dependent pathway. Both protein constructs appear to aggregate via a nucleated polymerization with a small nucleus size, yet the later steps differ. The full-length protein forms larger aggregates than the truncated protein, indicating that the N terminus may mediate higher-order aggregation processes. In addition, the N terminus has an influence on the assembly state of PrP before aggregation begins, causing the full-length protein to adopt several oligomeric forms in a neutral pH buffer. Our results emphasize the importance of studying the full-length protein in addition to the truncated forms for in vitro aggregation studies in order to make valid hypotheses about the mechanisms of prion aggregation and the distribution of aggregates in vivo.  相似文献   

12.
The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar β-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined β-sheet-rich oligomer, containing ∼12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23–90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91–231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein.  相似文献   

13.
Prion diseases are infectious and fatal neurodegenerative diseases. The pathogenic agent is an abnormal prion protein aggregate. Microglial activation in the centre nervous system is a characteristic feature of prion disease. In this study, we examined the effect of PrP 106–126 on PrP mRNA gene expression in Mouse microglia cells BV-2 by real-time quantitative PCR. PrP mRNA expression level was found to be significantly increased after 18 h exposure of BV-2 cells to PrP 106–126, with 3-fold increase after 18 h and 4.5-fold increase after 24 h and BV-2 cells proliferating occurred correspondingly. Our results provide the first in vitro evidence of the increase of PrP mRNA levels in microglial cells exposed to PrP 106–126, and indicate that microglial cells might play a critical role in prion pathogenesis.  相似文献   

14.
Tau融合蛋白及其缺失突变体与朊蛋白的体外作用分析   总被引:1,自引:0,他引:1  
在部分朊病毒病(prion diseases)中,高度磷酸化的微管相关蛋白tau与朊蛋白(prion protein,PrP)发生共定位,tau蛋白可能在朊病毒病的病理机制中有重要作用. 本室已经证明二者可以发生分子间相互作用,本文进一步分析了tau蛋白与prion的体外相互作用及作用位点. 利用RT-PCR方法从人源细胞系SHSY5Y cDNA中扩增出微管相关蛋白tau全长cDNA序列,克隆至质粒pGEX-2T载体,在大肠杆菌中诱导表达融合蛋白GST-tau. 利用GST pull-down及免疫共沉淀方法检测全长tau蛋白与PrP23-231的分子间相互作用. 进一步表达tau 蛋白的各种缺失突变体,确定tau蛋白与PrP蛋白的相互作用位点. 结果表明,所表达的全长tau蛋白及各种缺失突变体均为可溶性蛋白,Western印迹结果显示,各种蛋白均能很好的被tau蛋白单抗识别. GST pull-down和免疫共沉淀实验均显示,原核表达的全长tau蛋白可与全长的PrP蛋白在体外发生相互作用,并确定相互作用位点位于tau蛋白的N端序列及中段的重复区. 上述结果为研究tau蛋白与PrP的相互作用在朊病毒病的发病机制中的意义提供了一定的理论基础.  相似文献   

15.
While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient''s post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.  相似文献   

16.
Recently published data show that the prion protein in its cellular form (PrP(C)) is a component of multimolecular complexes. In this report, zero-length cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) allowed us to identify tubulin as one of the molecules interacting with PrP(C) in complexes observed in porcine brain extracts. We found that porcine brain tubulin added to these extracts can be cross-linked with PrP(C). Moreover, we observed that the 34 kDa species identified previously as full-length diglycosylated prion protein co-purifies with tubulin. Cross-linking of PrP(C) species separated by Cu(2+)-loaded immobilized metal affinity chromatography confirmed that only the full-length protein but not the N-terminally truncated form (C1) binds to tubulin. By means of EDC cross-linking and cosedimentation experiments, we also demonstrated a direct interaction of recombinant human PrP (rPrP) with tubulin. The stoichiometry of cosedimentation implies that rPrP molecules are able to bind both the alpha- and beta-isoforms of tubulin composing microtubule. Furthermore, prion protein exhibits higher affinity for microtubules than for unpolymerized tubulin.  相似文献   

17.
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC) into scrapie prion protein (PrPSc) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site‐selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.  相似文献   

18.
Transmissibility and distinctive neuropathology are hallmark features of prion diseases differentiating them from other neurodegenerative disorders, with pathogenesis and transmission appearing closely linked to misfolded conformers (PrP(Sc)) of the ubiquitously expressed cellular form of the prion protein (PrP(C)). Given the apparent pathogenic primacy of misfolded PrP, the utilisation of peptides based on the prion protein has formed an integral approach for providing insights into misfolding pathways and pathogenic mechanisms. In parallel with studies employing prion peptides, similar approaches in other neurodegenerative disorders such as Alzheimer Disease, have demonstrated that differential processing of parent proteins and quite minor variations in the primary sequence of cognate peptides generated from the same constitutive processing (such as Aβ1-40 versus Aβ1-42 produced from γ-secretase activity) can be associated with very different pathogenic consequences. PrP(C) also undergoes constitutive α- or β-cleavage yielding C1 (residues 112-231 human sequence) or C2 (residues 90-231), respectively, with the full cell biological significance of such processing unresolved; however, it is noteworthy that in prion diseases, such as Creutzfeldt-Jakob disease (CJD) and murine models, the moderately extended C2 fragment predominates in the brain suggesting that the two cleavage events and the consequent C-terminal fragments may differ in their pathogenic significance. Accordingly, studies characterising biologically relevant peptides like C1 and C2, would be most valid if undertaken using peptides completely free of any inherent non-native sequence that arises as a by-product of commonly employed recombinant production techniques. To achieve this aim and thereby facilitate more representative biophysical and neurotoxicity studies, we adapted the combination of high fidelity Taq TA cloning with a SUMO-Hexa-His tag-type approach, incorporating the SUMO protease step. This technique consistently produced sufficient yields (~10 mg/L) of high purity peptides (>95%) equating to C1 and C2 of exact native primary sequence in the α-helical conformation suitable for biological and biophysical investigations.  相似文献   

19.
The common use of one-dimensional (1-D) immunoblot with a single monoclonal antibody (Mab) engenders the notion that the normal or cellular prion protein (PrP(C) ) comprises few and simple forms. In this study we used two-dimensional (2-D) immunoblot with a panel Mabs to various regions of the prion protein to demonstrate the complexity of the PrP(C) present in human brain. We distinguished over 50 immunoblot spots, each representing a distinct PrP(C) species based on combinations of different molecular weights and isoelectric points (pIs). The PrP(C) heterogeneity is due to the presence of a full-length and two major truncated forms as well as to the diversity of the glycans linked to most of these forms. The two major truncated forms result from distinct cleavage sites located at the N-terminus. In addition, enzymatic removal of sialic acid and lectin binding studies indicate that the glycans linked to the full-length and truncated PrP(C) forms differ in their structure and ratios of the glycoforms. The truncation of PrP(C) and the heterogeneity of the linked glycans may play a role in regulating PrP(C) function. Furthermore, the presence of relatively large quantities of different PrP(C) species may provide additional mechanisms by which the diversity of prion strains could be generated.  相似文献   

20.
《朊病毒》2013,7(3):201-210
The yeast Saccharomyces cerevisiae is a tractable model organism in which both to explore the molecular mechanisms underlying the generation of disease-associated protein misfolding and to map the cellular responses to potentially toxic misfolded proteins. Specific targets have included proteins which in certain disease states form amyloids and lead to neurodegeneration. Such studies are greatly facilitated by the extensive ‘toolbox’ available to the yeast researcher that provides a range of cell engineering options. Consequently, a number of assays at the cell and molecular level have been set up to report on specific protein misfolding events associated with endogenous or heterologous proteins. One major target is the mammalian prion protein PrP because we know little about what specific sequence and/or structural feature(s) of PrP are important for its conversion to the infectious prion form, PrPSc. Here, using a study of the expression in yeast of fusion proteins comprising the yeast prion protein Sup35 fused to various regions of mouse PrP protein, we show how PrP sequences can direct the formation of non-transmissible amyloids and focus in particular on the role of the mouse octarepeat region. Through this study we illustrate the benefits and limitations of yeast-based models for protein misfolding disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号