首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Variations in the temporal structure of an interval can lead to remarkable differences in perceived duration. For example, it has previously been shown that isochronous intervals, that is, intervals filled with temporally regular stimuli, are perceived to last longer than intervals left empty or filled with randomly timed stimuli. Characterizing the extent of such distortions is crucial to understanding how duration perception works. One account to explain effects of temporal structure is a non-linear accumulator-counter mechanism reset at the beginning of every subinterval. An alternative explanation based on entrainment to regular stimulation posits that the neural response to each filler stimulus in an isochronous sequence is amplified and a higher neural response may lead to an overestimation of duration. If entrainment is the key that generates response amplification and the distortions in perceived duration, then any form of predictability in the temporal structure of interval fillers should lead to the perception of an interval that lasts longer than a randomly filled one. The present experiments confirm that intervals filled with fully predictable rhythmically grouped stimuli lead to longer perceived duration than anisochronous intervals. No general over- or underestimation is registered for rhythmically grouped compared to isochronous intervals. However, we find that the number of stimuli in each group composing the rhythm also influences perceived duration. Implications of these findings for a non-linear clock model as well as a neural response magnitude account of perceived duration are discussed.  相似文献   

2.

Background

Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.

Methodology/Principal Findings

Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context – that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.

Conclusions/Significance

Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.  相似文献   

3.
The blue light photopigment cryptochrome (CRY) is thought to be the main circadian photoreceptor of Drosophila melanogaster. Nevertheless, entrainment to light-dark cycles is possible without functional CRY. Here, we monitored phase response curves of cry(01) mutants and control flies to 1-hour 1000-lux light pulses. We found that cry(01) mutants phase-shift their activity rhythm in the subjective early morning and late evening, although with reduced magnitude. This phase-shifting capability is sufficient for the slowed entrainment of the mutants, indicating that the eyes contribute to the clock's light sensitivity around dawn and dusk. With longer light pulses (3 hours and 6 hours), wild-type flies show greatly enhanced magnitude of phase shift, but CRY-less flies seem impaired in the ability to integrate duration of the light pulse in a wild-type manner: Only 6-hour light pulses at circadian time 21 significantly increased the magnitude of phase advances in cry(01) mutants. At circadian time 15, the mutants exhibited phase advances instead of the expected delays. These complex results are discussed.  相似文献   

4.
The mole crab Emerita talpoida migrates with the tide in the swash zone of sand beaches. A circatidal rhythm in vertical swimming underlies movement, in which mature male crabs show peak swimming activity 1-2 h after the time of high tides at the collection site. In addition, there is a secondary rhythm in activity amplitude, in which crabs are maximally active following low amplitude high tides and minimally active following high amplitude high tides. The present study determined the phase response relationship for entrainment of the circatidal rhythm with mechanical agitation and whether the cycle in activity related to tidal amplitude could be entrained by a cycle in the duration of mechanical agitation at the times of consecutive high tides. After entrainment with mechanical agitation on an orbital shaker, activity of individual crabs was monitored in constant conditions with a video system and quantified as the number of ascents from the sand each 0.5 h. Mechanical agitation at the times of high tide, mid-ebb and low tide reset the timing of the circatidal rhythm according to the timing relationship to high tide. However, mechanical agitation during flood tide had no entrainment effect. In addition, a cycle in duration of mechanical agitation entrained the rhythm in activity amplitude associated with tidal amplitude. Both rhythms and entrainment effectiveness over the tidal cycle may function to reduce the likelihood of stranding above the swash zone.  相似文献   

5.
Some infants show a free-running rhythm in their rest-activity. We do not know why, nor do we know exactly what the entrainment factors are for the development of the normal 24-h rest-activity rhythm. Actigraphic recordings on 10 primiparae during late pregnancy and these mothers and their infants during the 2nd, 6th, and 12th wks after birth were made over 3-5 continuous days to investigate maternal and infant entrainment. One infant showed a free-running rest-activity circadian rhythm. In late pregnancy, the period in the autocorrelogram of the mother with the free-running infant was longer than the significant period of the mean autocorrelogram of the mothers with non-free-running infants. The finding of this study indicates the free-running rhythm of infant is not reset by maternal entrainment factors.  相似文献   

6.
This study investigated a potential auditory illusion in duration perception induced by rhythmic temporal contexts. Listeners with or without musical training performed a duration discrimination task for a silent period in a rhythmic auditory sequence. The critical temporal interval was presented either within a perceptual group or between two perceptual groups. We report the just-noticeable difference (difference limen, DL) for temporal intervals and the point of subjective equality (PSE) derived from individual psychometric functions based on performance of a two-alternative forced choice task. In musically untrained individuals, equal temporal intervals were perceived as significantly longer when presented between perceptual groups than within a perceptual group (109.25% versus 102.5% of the standard duration). Only the perceived duration of the between-group interval was significantly longer than its objective duration. Musically trained individuals did not show this effect. However, in both musically trained and untrained individuals, the relative difference limens for discriminating the comparison interval from the standard interval were larger in the between-groups condition than in the within-group condition (7.3% vs. 5.6% of the standard duration). Thus, rhythmic grouping affected sensitivity to duration changes in all listeners, with duration differences being harder to detect at boundaries of rhythm groups than within rhythm groups. Our results show for the first time that temporal Gestalt induces auditory duration illusions in typical listeners, but that musical experts are not susceptible to this effect of rhythmic grouping.  相似文献   

7.
Why does a clock sometimes appear stopped? Is it possible to perceive the world in slow motion during a car accident? Can action and effect be reversed? Time perception is surprisingly prone to measurable distortions and illusions. The past few years have introduced remarkable progress in identifying and quantifying temporal illusions of duration, temporal order, and simultaneity. For example, perceived durations can be distorted by saccades, by an oddball in a sequence, or by stimulus complexity or magnitude. Temporal order judgments of actions and sensations can be reversed by the exposure to delayed motor consequences, and simultaneity judgments can be manipulated by repeated exposure to nonsimultaneous stimuli. The confederacy of recently discovered illusions points to the underlying neural mechanisms of time perception.  相似文献   

8.
It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the ‘downbeat’; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).  相似文献   

9.
Some infants show a free-running rhythm in their rest-activity. We do not know why, nor do we know exactly what the entrainment factors are for the development of the normal 24-h rest-activity rhythm. Actigraphic recordings on 10 primiparae during late pregnancy and these mothers and their infants during the 2nd, 6th, and 12th wks after birth were made over 3–5 continuous days to investigate maternal and infant entrainment. One infant showed a free-running rest-activity circadian rhythm. In late pregnancy, the period in the autocorrelogram of the mother with the free-running infant was longer than the significant period of the mean autocorrelogram of the mothers with non-free-running infants. The finding of this study indicates the free-running rhythm of infant is not reset by maternal entrainment factors. (Author correspondence: )  相似文献   

10.

Background

The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.

Methodology/Findings

We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.

Conclusions/Significance

These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions.  相似文献   

11.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

12.
The effects of brief light pulses (1-60 min in duration) on the circadian rhythm of locomotor activity and/or the neuroendocrine-gonadal axis was investigated in male Djungarian hamsters. Exposure of hamsters free-running in constant darkness to a single 1-h pulse of light induced phase-dependent phase shifts in the rhythm of locomotor activity. The general shape of the "phase-response curve" was similar to that observed in other animals; phase-delays and phase-advances were induced by light pulses delivered in the early and late subjective night, respectively, while light pulses during the subjective day induced little or no phase-shift in the activity rhythm. Animals exposed for 7 days to 1-min of light during the night in animals otherwise exposed to 6L:18D resulted in increased levels of serum FSH and testicular weight. Daily exposure to two 1-h or two 10-min pulses of light (but not two 1-min pulses) for 10 days resulted in stable entrainment of the activity rhythm as well as testicular weight gains and serum FSH increases. When two 10-min pulses of light were presented 8 and 16 h apart, some animals showed a short-day entrainment pattern (i.e., locomotor activity confined to the long period of darkness) while other animals showed a long-day entrainment pattern (i.e., locomotor activity confined to the short period of darkness). Importantly, the stimulatory effects of light on neuroendocrine-gonadal activity were clearly dependent on the phase-relationship between the light pulses and the circadian rhythm of locomotor activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Yilmaz O  Tripathy SP  Ogmen H 《PloS one》2012,7(5):e36511
Trajectory perception is crucial in scene understanding and action. A variety of trajectory misperceptions have been reported in the literature. In this study, we quantify earlier observations that reported distortions in the perceived shape of bilinear trajectories and in the perceived positions of their deviation. Our results show that bilinear trajectories with deviation angles smaller than 90 deg are perceived smoothed while those with deviation angles larger than 90 degrees are perceived sharpened. The sharpening effect is weaker in magnitude than the smoothing effect. We also found a correlation between the distortion of perceived trajectories and the perceived shift of their deviation point. Finally, using a dual-task paradigm, we found that reducing attentional resources allocated to the moving target causes an increase in the perceived shift of the deviation point of the trajectory. We interpret these results in the context of interactions between motion and position systems.  相似文献   

14.
To elucidate how peripheral somatic afferents synchronize the respiratory rhythm to the exercise rhythm, the phrenic nerve activity in the vagotomized, paralyzed, and artificially ventilated cats anesthetized with chloralose-urethane was recorded during electrical stimulation of the superficial radial nerve afferents. At first, a single pulse train was given at various times of the respiratory cycle to obtain a phase-response curve (PRC). The stimulation given at mid to late expiration produced a phase advance, but the stimulation during inspiration produced no measurable phase shifts in most animals (8/10). The maximum phase advance changed depending on the stimulus intensity. The stronger the stimulus intensity, the greater became the maximum phase advance. Repetitive somatic afferent stimulation produced 1:1 entrainment of the respiratory frequency to the repetitive stimulation. Theoretical predictions on the stable entrainment phase and on the entrainment frequency range from the obtained PRC were close to the experimental results. The present study demonstrated the presence of a neuronal circuit synchronizing the respiratory rhythm to the periodic somatic afferents and the manner of how such entrainment occurs.  相似文献   

15.
Marois R  Leung HC  Gore JC 《Neuron》2000,25(3):717-728
The primate visual system is considered to be segregated into ventral and dorsal streams specialized for processing object identity and location, respectively. We reexamined the dorsal/ventral model using a stimulus-driven approach to object identity and location processing. While looking at repeated presentations of a standard object at a standard location, subjects monitored for any infrequent "oddball" changes in object identity, location, or identity and location (conjunction). While the identity and location oddballs preferentially activated ventral and dorsal brain regions respectively, each oddball type activated both pathways. Furthermore, all oddball types recruited the lateral temporal cortex and the temporo-parietal junction. These findings suggest that a strict dorsal/ventral dual-stream model does not fully account for the perception of novel objects in space.  相似文献   

16.
In Drosophila multiple circadian oscillators and behavioral rhythms are known to exist, yet most previous studies that attempted to understand circadian entrainment have focused on the activity/rest rhythm and to some extent the adult emergence rhythm. Egg laying behavior of Drosophila females also follows circadian rhythmicity and has been seen to deviate substantially from the better characterized rhythms in a few aspects. Here we report the findings of our study aimed at evaluating how circadian egg laying rhythm in fruit flies Drosophila melanogaster entrains to time cues provided by light and temperature. Previous studies have shown that activity/rest rhythm of flies entrains readily to light/dark (LD) and temperature cycles (TC). Our present study revealed that egg laying rhythm of a greater percentage of females entrains to TC compared to LD cycles. Therefore, in the specific context of our study this result can be taken to suggest that egg laying clocks of D. melanogaster entrains to TC more readily than LD cycles. However, when TC were presented along with out-of-phase LD cycles, the rhythm displayed two peaks, one occurring close to lights-off and the other near the onset of low temperature phase, indicating that upon entrainment by TC, LD cycles may be able to exert a greater influence on the phase of the rhythm. These results suggest that temperature and light associatively entrain circadian egg laying clocks of Drosophila.  相似文献   

17.
The American horseshoe crab, Limulus polyphemus (Linnaeus), typically inhabits estuaries and coastal areas with pronounced semi-diurnal and diurnal tides that are used to synchronize the timing of spawning, larval hatching, and emergence. Horseshoe crabs spawn in the intertidal zone of sandy beaches and larval emergence occurs when the larvae exit the sediments and enter the plankton. However, L. polyphemus populations also occur in areas that lack significant tidal changes and associated synchronization cues. Endogenous activity rhythms that match predictable environmental cycles may enable larval horseshoe crabs to time swimming activity to prevent stranding on the beach. To determine if L. polyphemus larvae possess a circatidal rhythm in vertical swimming, larvae collected from beach nests and the plankton were placed under constant conditions and their activity monitored for 72 h. Time-series analyses of the activity records revealed a circatidal rhythm with a free-running period of ≈ 12.5 h. Maximum swimming activity consistently occurred during the time of expected falling tides, which may serve to reduce the chance of larvae being stranded on the beach and aid in seaward transport by ebb currents (i.e., ebb-tide transport). To determine if agitation serves as the entrainment cue, larvae were shaken on a 12.4 h cycle to simulate conditions during high tide in areas with semi-diurnal tides. When placed under constant conditions, larval swimming increased near the expected times of agitation. Thus, endogenous rhythms of swimming activity of L. polyphemus larvae in both tidal and nontidal systems may help synchronize swimming activity with periods of high water and inundation.  相似文献   

18.
What determines the magnitude of attentional capture by deviant sound events? We combined the cross-modal oddball distraction paradigm with sequence learning to address this question. Participants responded to visual targets, each preceded by tones that formed a repetitive cross-trial standard sequence. In Experiment 1, with the standard tone sequence …-660-440-660-880-… Hz, either the 440 Hz or the 880 Hz standard was occasionally replaced by one of two deviant tones (220 Hz and 1100 Hz), that either differed slightly (by 220 Hz) or markedly (by 660 Hz) from the replaced standard. In Experiment 2, with the standard tone sequence …-220-660-440-660-880-660-1100-… Hz, the 440 Hz and the 880 Hz standard was occasionally replaced by either a 220 Hz or a 1100 Hz pattern deviant. In both experiments, a high-pitch deviant was more captivating when it replaced a low-pitch standard, and a low-pitch deviant was more captivating when it replaced a high-pitch standard. These results indicate that the magnitude of attentional capture by deviant sound events depends on the discrepancy between the deviant event and the expected event, not on perceived local change.  相似文献   

19.
The cuticle deposition rhythm, which is observed in the apodeme of the furca in the thorax, is controlled by a peripheral circadian clock in the epidermal cells and entrained to light-dark (LD) cycles via CRYPTOCHROME (CRY) in Drosophila melanogaster. In the present study, we examined the effects of temperature (TC) cycles and the combination of LD and TC cycles on entrainment of the cuticle deposition rhythm. The rhythm was entrained to TC cycles, whose period was 28 h. In T = 21 and 24 h, the rhythm was entrained to TC cycles in some individuals. CRY is not necessary for temperature entrainment of the cuticle deposition rhythm because the rhythm in cry(b) (lacking functional CRY) was entrained to TC cycles. Temperature entrainment of the rhythm was achieved even when the thoraxes or furcae were cultured in vitro, suggesting that the mechanism for temperature entrainment is independent of the central clock in the brain and the site of the thermoreception resides in the epidermal cells. When LD and TC cycles with different periods were applied, the rhythm was entrained to LD cycles with a slight influence of TC cycles. Thus, the LD cycle is a stronger zeitgeber than the TC cycle. The variance of the number of the cuticle layers decreased in the flies kept under LD and TC cycles with the same period in which the thermophase coincided with the photophase. Therefore, we conclude that LD and TC cycles synergistically entrain the rhythm. Synergistic effects of LD and TC cycles on entrainment were also observed even when the thoraxes were cultured in vitro, suggesting that the light and temperature information is integrated within the peripheral circadian system.  相似文献   

20.
Chien SE  Ono F  Watanabe K 《PloS one》2011,6(12):e28371
Shifts of visual attention cause systematic distortions of the perceived locations of visual objects around the focus of attention. In the attention repulsion effect, the perceived location of a visual target is shifted away from an attention-attracting cue when the cue is presented before the target. Recently it has been found that, if the visual cue is presented after the target, the perceived location of the target shifts toward the location of the following cue. One unanswered question is whether a single mechanism underlies both attentional repulsion and attraction effects. We presented participants with two disks at diagonal locations as visual cues and two vertical lines as targets. Participants were asked to perform a forced-choice task to judge targets' positions. The present study examined whether the magnitude of the repulsion effect and the attraction effect would differ (Experiment 1), whether the two effects would interact (Experiment 2), and whether the location or the dynamic shift of attentional focus would determine the distortions effects (Experiment 3). The results showed that the effect size of the attraction effect was slightly larger than the repulsion effect and the preceding and following cues have independent influences on the perceived positions. The repulsion effect was caused by the location of attnetion and the attraction effect was due to the dynamic shift of attentional focus, suggesting that the underlying mechanisms for the retrospective attraction effect might be different from those for the repulsion effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号