首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Do stomata respond to relative humidity?   总被引:24,自引:12,他引:12  
  相似文献   

2.
生态因子对滇重楼花药开裂的影响   总被引:1,自引:0,他引:1  
赵峥  尹芳园  耿开友  侯秀丽  王斌  王定康 《广西植物》2016,36(10):1192-1197
滇重楼为延龄草科重楼属植物,具有极高的药用价值,由于重楼传统药用部位生长缓慢、繁殖力低下,以及人们对野生重楼资源的过度采挖使其资源日趋枯竭。滇重楼的花药在整个花期中存在开裂-关闭的现象,花药的有效闭合应是保护花粉、延长花粉寿命、增强雄性适合度的一种适应机制。该研究以滇重楼为对象,通过设计正交实验和对比实验,观测其花药开裂过程中的光照强度、温度、湿度的变化,探究光照强度、温度、湿度等生态因子对滇重楼花药开裂的影响以及滇重楼花药开裂与生态因子变化的关系。结果表明:(1)在滇重楼花药开裂的过程中,光照强度增强、温度升高、相对湿度下降;(2)温度是影响滇重楼花药开裂时间的主导因子,升温促进花药开裂,降温促进花药关闭;(3)高湿度及黑暗推迟花药开裂,但并不能阻止花药开裂;(4)低温可使滇重楼花药持续关闭,而光照强度越高,花药持续关闭所需的温度越低。该研究有利于解释滇重楼花药白天开裂夜晚关闭的现象与环境因子的关系,对滇重楼的栽培育种提供理论指导。  相似文献   

3.
Unlike most social insects, Eciton burchellii army ants cannot thermoregulate through nest construction. Instead, army ants thermoregulate behaviorally by creating a living nest (bivouac), shifting its position and structure, and potentially through nest site selection. We hypothesized that bivouac site selection is critical to E. burchellii colony survival. We predicted elevation above sea level, with associated variation in local abiotic environments, would affect bivouac site selection by E. burchellii colonies. We also expected nest sites to buffer against ambient variation in abiotic conditions. We recorded bivouac site choice by E. burchellii colonies at sites ranging from lowland wet forests to montane forests and reviewed previously published data. We measured microclimatic variables associated with nest sites in high-elevation montane forests: temperature, relative humidity, and light levels. Bivouac site selection varied with elevation: as elevation increased, fewer bivouac sites were exposed, more were underground, and fewer were elevated (in trees). High-elevation bivouac sites moderated diurnal temperature variation and had higher relative humidity levels and lower light levels than ambient conditions. The buffering of ambient temperature and humidity decreased with elevation in montane forests, suggesting that abiotic extremes in bivouac sites at the highest elevations may contribute to the upper elevational range limits of E. burchellii.  相似文献   

4.
The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.  相似文献   

5.
Hamerlynck  E.P.  Tuba  Z.  Csintalan  Z.  Nagy  Z.  Henebry  G.  Goodin  D. 《Plant Ecology》2000,151(1):55-63
Most desiccation-tolerant plants alter shoot structure during drying, making it possible to use changes in surface reflectance as a proxy measure of plant water status. Diurnal courses of surface reflectance (albedo) and chlorophyll fluorescence parameters of the ectohydric moss, Tortula ruralis (Hedw.) Gaertn, were measured to assess the coordination between anatomical and physiological features under field conditions. Albedo showed a sigmoidal relationship with relative humidity and the deviation of moss mat temperature from dew point. Maximum photosynthetic quantum yield (F v/F m) also displayed a sigmoidal relationship pooled across three days differing in light, temperature, and relative humidity. Depending on the light conditions and rapidity of drying during the morning, there were distinct differences in the ability of T. ruralis to establish thermal dissipation of excess light energy (NPQ) across a range of light levels following rehydration through the day. These findings suggest that there is a coordinated suite of architectural and physiological characteristics maintaining the photosynthetic integrity of these plants in highly variable arid and semi-arid environments.  相似文献   

6.
光照、温度和湿度对桔小实蝇飞翔活动的影响   总被引:16,自引:1,他引:15  
刘建宏  叶辉 《昆虫知识》2006,43(2):211-214
于2004年6月在云南元江芒果园内通过性诱剂诱捕,对桔小实蝇Bactrocera dorsalis(Hendel)的飞翔活动日节律进行了全天24h的监测,并就光照、温度和相对湿度3个环境因子的影响进行了测试和综合分析。研究表明,桔小实蝇雄成虫仅在白天有光照的情况下进行飞翔活动,夜晚停止飞翔。在1d内有2个飞翔活动高峰期,分别发生在上午8∶00~9∶00和下午18∶00~20∶00,且前者进行飞翔活动的虫量相对后者要大。在下午2∶00左右进入白天飞翔活动的低谷。光刺激是桔小实蝇飞翔活动的基本条件,其趋光性因芒果园内树荫下的光照强度变化而异,在100~200lux之间对桔小实蝇飞翔活动明显有利,而当光照强度低于100lux或高于200lux,飞翔活动也相应减小。气温总体上位于桔小实蝇飞翔活动的适宜范围,而下午低于60%的相对湿度对其飞翔活动有一定的抑制作用。气温、湿度和光照对桔小实蝇飞翔活动的作用机理各不相同并且各因子之间也相互作用,最终对桔小实蝇的飞翔活动产生综合效应。  相似文献   

7.
The psychrophilic Antarctic alga, Chlamydomonas raudensis Ettl (UWO241), grows under an extreme environment of low temperature and low irradiance of a limited spectral quality (blue‐green). We investigated the ability of C. raudensis to acclimate to long‐term imbalances in excitation caused by light quality through adjustments in photosystem stoichiometry. Log‐phase cultures of C. raudensis and C. reinhardtii grown under white light were shifted to either blue or red light for 12 h. Previously, we reported that C. raudensis lacks the ability to redistribute light energy via the short‐term mechanism of state transitions. However, similar to the model of mesophilic alga, C. reinhardtii, the psychrophile retained the capacity for long‐term adjustment in energy distribution between PSI and PSII by modulating the levels of PSI reaction center polypeptides, PsaA/PsaB, with minimal changes in the content of the PSII polypeptide, D1, in response to changes in light quality. The functional consequences of the modulation in PSI/PSII stoichiometry in the psychrophile were distinct from those observed in C. reinhardtii. Exposure of C. raudensis to red light caused 1) an inhibition of growth and photosynthetic rates, 2) an increased reduction state of the intersystem plastoquinone pool with concomitant increases in nonphotochemical quenching, 3) an uncoupling of the major light‐harvesting complex from the PSII core, and 4) differential thylakoid protein phosphorylation profiles compared with C. reinhardtii. We conclude that the characteristic low levels of PSI relative to PSII set the limit in the capacity of C. raudensis to photoacclimate to an environment enriched in red light.  相似文献   

8.
Studies were carried out in the laboratory on the influences of time of day, temperature, relative humidity and starvation on flight initiation byProstephanus truncatus (Horn) (Coleoptera: Bostrichidae). Flight occurred throughout the 12 h photophase and at the beginning of the scotophase but peaked at 2–0 h before darkness. Temperature exerted a significant effect on flight. The frequency of flight take-off increased with temperature over the range 20–30°C but declined sharply at 35°C. Flight activity increased with starvation up to a maximum at 2 days after which it began to decline.  相似文献   

9.
A technique was developed for studying the flight activity of the, black fly,Simulium arcticum, under controlled environment conditions. Wind speed, light, temperature and humidity could be controlled and monitored in the flight chambers. Accurate measurement and recording of individual insect activity were achieved with a high-sensitivity video recording and monitoring system. The controlled-environment monitoring system is adaptable for investigations of the environmental behaviour and physiology of various insect species.  相似文献   

10.
Although the timing of oögenesis appears to be a major life‐history organizer in the parasitoid Hymenoptera, relatively little is known about how this trait correlates with population dispersal by flight in these wasps. Pre‐oviposition flight behaviours of 1‐day‐old female wasps in a vertical flight chamber are measured to test correlations between these traits and with reproductive timing. The focus of the present study is on two genera of whitefly parasitoids (Encarsia and Eretmocerus) that differ in reproductive timing when feeding on a shared host (Bemisia tabaci). The two Eretmocerus species engage in vertical flight within 3 min of release far more frequently than the three Encarsia species. Because the former typically possess a more time‐limited reproductive strategy than the latter, this lends support for a positive interspecific association between early‐life reproduction and early‐life flight incidence. Within species, however, egg load does not correlate with flight propensity for any of the tested species. Furthermore, in Eretmocerus eremicus, the relationship between effective flight distance (i.e. the product of vertical climb rate and flight duration) and egg load appears to be labile rather than fixed because different trials show evidence for either negative or positive correlations between these variables. The source of this context dependence may be variation in either biotic (e.g. longevity) or abiotic (e.g. temperature and relative humidity) factors.  相似文献   

11.
Summary Plant survival ex vitro requires functioning stomata, adequate cuticular wax composition and deposition, and normal morphological development. Light intensity, CO2 and relative humidity were altered inside an acoustic window mist reactor to study their effects on carnation (Dianthus caryophyllus) growth, stomata development, hyperhydration and epicuticular wax content. Increasing the light intensity from 65 to 145 μmol m−2 s−1 and enrichment of the gas phase with CO2 (1350 ppm) reduced the number of hyperhydrated plants from 75 to 25% and increased the percentage dry weight of normal (healthy) plants from 17 to 25%. Lowering the relative humidity (≈70% RH) surrounding the plants during the mist-off phase for the last 2 wk of culture reduced the number of hyperhydrated plants from 70 to 9% and also increased the percentage of dry weight of normal plants from 16 to 25%. The stomata on plants grown in conditions of high light or low humidity had smaller apertures and appeared sunken when compared to stomata from plants grown in low light and high relative humidity. The epicuticular wax profiles of plants from the greenhouse or Magenta boxes showed a distinct shift in wax compounds with developmental age, plant type (hyperhydrated or normal), and type of box that was used (vented or not). In addition, very different wax profiles were observed from plants grown in reactors with altered CO2 and light intensities.  相似文献   

12.
In contrast to several organisms that have already shown range shifts to the north as a response to climate change, southern populations of relict species are trapped in isolated altitudinal habitats. Therefore, there is a growing interest to better understand their habitat use, with particular attention to the thermal aspects and associated significance for their habitat management. We address this issue by a study of larval habitat use relative to vegetation structure and microclimate in a glacial relict butterfly of peat bog ecosystems, using a functional, resource‐based habitat approach. We analysed caterpillar presence and density relative to vegetation composition (reflecting gradients of humidity, temperature, and natural succession of the peat bog) and to the availability and quality of thermal refuges for caterpillars (i.e., structures provided by Sphagnum hummocks). We also tested caterpillar survival rates under different temperature and humidity treatments. We found that (1) Boloria aquilonaris was a specialist butterfly of early successional stages with very humid zones of peat bog, (2) the lack of Sphagnum hummocks reduced larval habitat suitability, and hence the population density, and (3) a reduction of the thermal buffering ability of Sphagnum hummocks was observed in less humid, degraded parts, or late‐successional stages of peat bog. A larval rearing experiment showed a significant impact of temperature on caterpillar survival; survival being higher at lower temperature. Our field and laboratory results support the idea that the thermal environment exploited by caterpillars should be considered as a functional resource and included in a population‐specific habitat definition. Appropriate management of the peat bog habitat of this glacial relict species should not exclusively focus on the larval and adult feeding resources, but also on the quality of thermal refuges provided by Sphagnum hummocks in humid zones of the peat bog, especially in the current critical context of climate warming.  相似文献   

13.
In nature, ovipositing females may be subjected to multiple extrinsic and intrinsic environmental factors simultaneously. To adequately assess a species response to environmental conditions during oviposition it may therefore be necessary to consider the interaction between multiple intrinsic and extrinsic factors simultaneously. Using the butterfly, Pararge aegeria, this study examined the combined effects of extrinsic (temperature and flight) and intrinsic (body mass and age) factors on ovarian dynamics, egg provisioning and reproductive output, and explored how these effects subsequently influenced offspring fitness when egg-stage development occurred in a low humidity environment. Both temperature- and flight-mediated plasticity in female reproductive output was observed, and there were strong temperature by flight interaction effects for the traits oocyte size and egg mass. As females aged, mean daily fecundity differed across temperature treatments, but not across flight treatments. Overall, temperature had more pronounced effects on ovarian dynamics than flight. Flight mainly influenced egg mass via changes in relative water content. A mismatch between the physiological response of females to high temperature and the requirements of their offspring had a negative impact on offspring fitness via effects on egg hatching success.  相似文献   

14.
The flight activity of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) was monitored over a 3‐year period in greenhouses containing tomato and zucchini crops. The environmental factors affecting its flight activity and dispersal were analyzed. Among the climatic variables, temperature had a positive impact on T. vaporariorum flight, whereas relative humidity had only a weak effect. More flights were made during the morning and afternoon, with fewer flights occurring when the temperature was above 25°C in greenhouses containing zucchini or above 30°C in those containing tomato; no flights were recorded when the temperature was 12.30°C in either setting. Flight typology, classified as short, long or dispersal, and covering a few centimeters to more than 2–3 m, was influenced by the vegetative condition of the plants. As the plants aged and declined in condition, the number of short flights decreased, whereas the number of long and dispersal flights increased. Based on these results, we can conclude that the dispersal of T. vaporariorum in greenhouses containing either tomato or zucchini crops is generally influenced by environmental factors, which also affect the type of flight, with a trade‐off between short and long dispersal flights. However, adult dispersal is driven not only by temperature, but also by other factors, such as conspecific density and time of the day. Therefore, producers must consider such factors when aiming to reduce the dispersal of pest insects within greenhouses and, thus, to maintain the productivity of their crops.  相似文献   

15.
Question: Are differences in microhabitat preferences of co‐occurring epiphytic Hymenophyllaceae species (filmy ferns) correlated with differences in ecophysiological responses to light availability and humidity in the host tree? Location: The Andean foothills in south‐central Chile. Methods: We evaluated the distribution pattern of nine filmy fern species in microhabitats that differ in light availability and humidity in four host tree species. A DCA was developed to assess Hymenophyllaceae species microhabitat preference in terms of canopy openness (CO) and relative humidity. We assessed whether differences in chlorophyll content, maximum photochemical efficiency (Fv/Fm), photosynthetic capacity (Amax), evapotranspiration (E) and instantaneous water use efficiency (WUE) are consistent with any pattern. Results: CO and relative humidity differed significantly with height in the host trees. While CO increased with height in a host tree, relative humidity decreased. DCA analysis showed that filmy fern species distribution within and among trees was mainly explained by the relative humidity of the microhabitat. Chlorophyll content, chlorophyll a/b ratio, Amax and E differed significantly among filmy fern species. Amax and E were correlated with axis 1 scores from the DCA analysis. Conclusions: The vertical distribution and abundance of filmy fern species in Chilean temperate rain forest seems to be closely related to the different microhabitats offered by host trees. This pattern may reflect interspecific differences in ecophysiological traits related both to light availability and humidity. Our results suggest that humidity is the main environmental factor driving functional responses and habitat preferences of these filmy fern species.  相似文献   

16.
To determine the effectiveness of rehabilitation on improving ecosystem functions, we examined net photosynthetic rate (P N), tree species composition, soil enzyme activities, and the microclimate (air and soil temperature, relative humidity) of an area on Mt. Makiling that has been rehabilitated and protected from fire for over 12 years. After it was last burned extensively in 1991, restoration was initiated by planting Acacia mangium and Acacia auriculiformis. We selected three areas to study in 2003. Two areas were rehabilitated with A. mangium and A. auriculiformis, and one was still dominated by Imperata cylindrica and Saccharum spontaneum. P N of A. mangium and A. auriculiformis showed significantly lower values than those of I. cylindrica and S. spontaneum. The Acacia plantations had more naturally regenerated tree species than the grassland. Additionally, more tree species appeared in the A. mangium plantation than in the A. auriculiformis plantation. Ficus spetica was present in all of the study sites. Dehydrogenase and phosphatase activities were significantly higher in soil under the Acacia plantations than under grassland. Grassland showed higher air temperature, relative humidity, and soil temperature as well as a larger variation per hour in these parameters compared to the Acacia plantations. The highest air temperature, relative humidity, and soil temperature were measured in April during the dry season. From the regression analysis, soil temperature was significantly correlated with air temperature. Hence plantations, as a rehabilitation activity for grassland, promote natural regeneration and stabilize the microclimate. This stabilization of the microclimate affects establishment and growth of naturally occurring tree species.  相似文献   

17.
The pupae of the tropical butterfly Danaus chrysippus are either green or pink the switch being operated by a ‘greening’ hormone produced in the larval head. Both environmental and genetic cues are involved in controlling the endocrine mechanism. The environmental factors identified are of two distinct kinds: proximate factors influence pupal colour after the larva has selected its pupation site, whereas ultimate factors are effective at an earlier stage, either prompting choice of pupation site by the larva or priming pupation physiology in a particular direction. Genetic factors preadapt the larva to form a pupa which will be cryptic in the normal or average conditions, climatic or biogeographical, anticipated in its environment. The proximate factors demonstrated are background colour, darkness, light quality (wavelength) and humidity. There is some evidence that substrate texture may also be relevant. Ultimate factors are temperature, humidity and species of larval foodplant. Two closely linked gene loci which govern the phenotype of adult morphs and races either have a pleiotropic effect on pupa colour or are closely linked with other genes which do so. Moreover, the two loci interact epistatically with respect to their pupation effects. Factors producing predominantly green pupae are plant substrates, yellow background, darkness, yellow light, high humidity, high temperature, the b allele at the B locus when homozygous and, on non-plant substrates, the C allele at the C locus. High frequencies of pink pupae result on non-plant substrates, red backgrounds, in blue light, low humidity, low temperatures and in B- and cc genotypes. The C locus alleles, C and c, interact epistatically with the B alleles, their effect on choice of pupation site being determined by linkage phase. Of the two foodplants tested, Calotropis produced a high frequency of green pupae and Tylophora of pinks. The seasonal cycling of rainfall, temperature, availability or condition of foodplant, and gene frequencies are all correlated with oscillations in the frequencies of green and pink pupae. Though genotype influences pupa colour, all genotypes are capable of forming pupae of both colours. The variation can therefore be attributed to an environmental polyphenism superimposed upon a genetic polymorphism. The hormone producing green pupae emanates from the head during the prepupal period. Denied hormonal influence, the pupa is pink. Pupal colour is judged to be aposematic at close range and cryptic at distance.  相似文献   

18.
The effect of temperature and relative humidity were determined on the development of Callosobruchus maculatus (F.) on stored bean (Vigna unguiculata) seeds exposed to five temperatures (20, 25, 30, 35 and 40 °C) and six relative humidity levels (40, 50, 60, 70, 80 and 90%). Oviposition and total adult progeny responded in a curvilinear pattern to temperature and relative humidity while developmental period presented a linear response. Egg laying (117.33 ± 3.21) and adult emergence (35.00 ± 1.70) were least at 20 °C and 90% R.H. but those showed the optimal values at 30 °C and 70% R.H. The implication of these findings is that the growth attributes of C. maculatus relate with the weather variables studied in a curvilinear manner and thus quadratic equations generated could be used for the prediction of optimum temperature and relative humidity in a given area for the management of C. maculatus in stored beans.  相似文献   

19.
The photosynthetic rates of Trentepohlia odorata (L.) Martius growing on wall surfaces in Singapore changed throughout the day with a maximum in midmorning and decreasing thereafter during the day. Optimum temperature for photosynthesis was 25° C. Different levels of air humidity also affected photosynthetic rates with low relative humidity reducing the rates and efficiency of photosynthesis. Our results suggested that T. odorata was able to maximize its rate of photosynthesis before photoinhibitory light levels were reached and that its growth might be dependent on high levels of atmospheric relative humidity, which may serve as a source of water supply for the alga.  相似文献   

20.
Zostera marina is the only seagrass species whose seeds have been successfully used in large‐scale restoration. Although progress has been made in refining Z. marina restoration protocols, additional information on Z. marina seed physiology is necessary as the science of seagrass restoration evolves. We tested the germination rates of Z. marina seeds under different relative humidities and temperatures for different periods of time. Z. marina seed moisture content (MC) and germination rates were also tested when seeds were exposed to a temperature of 25°C and relative humidity of 50%. Z. marina seeds suffered higher mortality when exposed to lower relative humidity and higher temperature for longer period of exposure time. A significant negative correlation was detected between seed germination rate and MC. Z. marina seeds are sensitive to desiccation exposure and long periods of exposure to air should be prevented to minimize seed mortality when seeds are used in restoration projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号