首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杉木林年龄序列地下碳分配变化   总被引:5,自引:0,他引:5       下载免费PDF全文
  森林地下碳分配在森林碳平衡和碳吸存中具有重要作用, 而揭示人工林生长过程中地下碳分配变化对于人工林碳汇估算和碳汇管理等有重要意义。通过采用年龄序列方法研究了杉木(Cunninghamia lanceolata)林生长过程中地下碳分配变化特点。年龄序列为福建省南平7 a生(幼龄林)、16 a生(中龄林)、21 a生(近熟林)、41 a生(成熟林)和88 a生(老龄林)的杉木林。细根净生产力测定采用连续土芯法, 根系呼吸测定采用壕沟法, 生物量增量测定采用异速生长方程, 地上年凋落物量采用凋落物收集框测定。结果表明: 杉木林细根净生产力在中龄林前没有显著差异, 维持在较高水平; 但此后则显著下降。细根净生产力/地上凋落物量比值随林龄增加而显著下降。老龄林的根系呼吸显著低于其它林龄林分, 根系呼吸与细根生物量间呈显著线性相关。中龄林和近成熟林的地下碳分配(Total belouground carbon allocation, TBCA)显著高于幼龄林和成熟林, 而老龄林的则最低。中龄林、近成熟林和成熟林的地上部分净生产力/TBCA比值显著高于幼龄林和老龄林, 而杉木林的根系碳利用效率(RCUE)则呈现出随林龄增加而降低的趋势。  相似文献   

2.
Carbon storage and sequestration in tropical mountain forests and their dependence on elevation and temperature are not well understood. In an altitudinal transect study in the South Ecuadorian Andes, we tested the hypotheses that (i) aboveground net primary production (ANPP) decreases continuously with elevation due to decreasing temperatures, whereas (ii) belowground productivity (BNPP) remains constant or even increases with elevation due to a shift from light to nutrient limitation of tree growth. In five tropical mountain forests between 1050 and 3060 m a.s.l., we investigated all major above‐ and belowground biomass and productivity components, and the stocks of soil organic carbon (SOC). Leaf biomass, stemwood mass and total aboveground biomass (AGB) decreased by 50% to 70%, ANPP by about 70% between 1050 and 3060 m, while stem wood production decreased 20‐fold. Coarse and large root biomass increased slightly, fine root biomass fourfold, while fine root production (minirhizotron study) roughly doubled between 1050 and 3060 m. The total tree biomass (above‐ and belowground) decreased from about 320 to 175 Mg dry mass ha?1, total NPP from ca. 13.0 to 8.2 Mg ha?1 yr?1. The belowground/aboveground ratio of biomass and productivity increased with elevation indicating a shift from light to nutrient limitation of tree growth. We propose that, with increasing elevation, an increasing nitrogen limitation combined with decreasing temperatures causes a large reduction in stand leaf area resulting in a substantial reduction of canopy carbon gain toward the alpine tree line. We conclude that the marked decrease in tree height, AGB and ANPP with elevation in these mountain forests is caused by both a belowground shift of C allocation and a reduction in C source strength, while a temperature‐induced reduction in C sink strength (lowered meristematic activity) seems to be of secondary importance.  相似文献   

3.
The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.  相似文献   

4.
Large parts of the remaining tropical moist forests of South-east Asia are encroached at their margins by selective logging, rattan harvesting and the establishment of small agroforest plantations under the rainforest canopy. These slight to heavy disturbances affect aboveground forest structure by reducing wood biomass and canopy cover; however, they may also have a profound impact on the belowground compartment. In a lower montane moist forest of Central Sulawesi, we studied the profile totals of fine root biomass (FRBtot, roots <2 mm until 50 cm of soil depth) and of fine root necromass (FRNtot), the vertical distribution of fine root mass, and the fine root live/dead ratio by root coring in 12 forest stands that represented a gradient in forest use (or disturbance) intensity (forest use type A: undisturbed natural forest, B and C: slightly or moderately disturbed forests with selective timber extraction, D: heavily disturbed cacao agroforest systems under a remaining rainforest cover; each forest types being replicated three times). FRBtot decreased significantly from forest A to the disturbed B, C and D forests, and reached less than 60% of the FRBtot value of A in the agroforest systems D. A similar decrease with increasing disturbance intensity was found for FRNtot. Forest disturbance intensity had no significant influence on the vertical distribution of fine root biomass in the profiles. According to correlation and principal components analyses, fractional canopy cover was the most important factor influencing FRBtot and FRNtot, whereas diameter at breast height, stand basal area, stem density, soil pH and base saturation had only a minor or no influence on root mass. A reduction in canopy cover from 90% (forest type A) to 75% (types C and D) was associated with a reduction in FRBtot by about 45% which indicates that timber extraction leads not only to canopy gaps but to corresponding ‘root gaps’ in the soil as well. We conclude that forest encroachment that is widespread in large parts of South-east Asia’s remaining rainforests significantly reduces tree fine root biomass and associated carbon sequestration, even if it is conducted at moderate intensities only.  相似文献   

5.
Tropical rain forests decrease in tree height and aboveground biomass (AGB) with increasing elevation. The causes of this phenomenon remain insufficiently understood despite a number of explanations proposed including direct or indirect effects of low temperature on carbon acquisition and carbon investment, adverse soil conditions and impaired nutrient supply. For analysing altitudinal patterns of aboveground/belowground carbon partitioning, we measured fine (<2 mm in diameter) and coarse root (2–5 mm) biomass and necromass and leaf area index (LAI), and estimated AGB from stand structural parameters in five tropical mountain rain forests at 1050, 1540, 1890, 2380 and 3060 m along an altitudinal transect in the South Ecuadorian Andes. Average tree height and AGB were reduced to less than 50% between 1050 and 3060 m, LAI decreased from 5.1 to 2.9. The leaf area reduction must have resulted in a lowered canopy carbon gain and thus may partly explain the reduced tree growth in the high-elevation stands. In contrast, both fine and coarse root biomass significantly increased with elevation across this transect. The ratio of root biomass (fine and coarse) to AGB increased more than ten-fold from 0.04 at 1050 m to 0.43 at 3060 m. Under the assumption that fine root biomass does reflect root productivity, our data indicate a marked belowground shift in C allocation with increasing elevation. Possible explanations for this allocation shift are discussed including reduced N supply due to low temperatures, water logging or adverse soil chemical conditions. We conclude that the fine root system and its activity may hold the key for understanding the impressive reduction in tree size along tropical mountain slopes in Ecuador. Analyses of fine root turnover and longevity in relation to environmental factors along altitudinal transects in tropical mountains are urgently needed.  相似文献   

6.
Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi‐deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%–50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity‐allocation‐turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics.  相似文献   

7.
One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1–1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.  相似文献   

8.

Biotically-mediated weathering helps to shape Earth’s surface. For example, plants expend carbon (C) to mobilize nutrients in forms whose relative abundances vary with depth. It thus is likely that trees’ nutrient acquisition strategies—their investment in rooting systems and exudates—may function differently following disturbance-induced changes in depth of rooting zones and soil nutrient stocks. These changes may persist across centuries. We test the hypothesis that plant C allocation for nutrient acquisition is depth dependent as a function of rooting system development and relative abundances of organic vs. mineral nutrient stocks. We further posit that patterns of belowground C allocation to nutrient acquisition reveal anthropogenic signatures through many decades of forest regeneration. To test this idea, we examined fine root abundances and rooting system C in organic acid exudates and exo-enzymes in tandem with depth distributions of organically- and mineral-bound P stocks. Our design permitted us to estimate C tradeoffs between organic vs. mineral nutrient benefits in paired forests with many similar aboveground traits but different ages: post-agricultural mixed-pine forests and older reference hardwoods. Fine roots were more abundant throughout the upper 2 m in reference forest soils than in regenerating stands. Rooting systems in all forests exhibited depth-dependent C allocations to nutrient acquisition reflecting relative abundances of organic vs. mineral bound P stocks. Further, organic vs. mineral stocks underwent redistribution with historic land use, producing distinct ecosystem nutritional economies. In reference forests, rooting systems are allocating C to relatively deep fine roots and low-C exudation strategies that can increase mobility of mineral-bound P stocks. Regenerating forests exhibit relatively shallower fine root distributions and more diverse exudation strategies reflecting more variable nutrient stocks. We observed these disparities in rooting systems’ depth and nutritional mechanisms even though the regenerating forests have attained aboveground biomass stocks similar to those in reference hardwood forests. These distinctions offer plausible belowground mechanisms for observations of continued C sink strength in relatively old forests, and have implications for soil C fates and soil development on timescales relevant to human lifetimes. As such, depth-dependent nutrient returns on plant C investments represent a subtle but consequential signal of the Anthropocene.

  相似文献   

9.
Keith  H.  Raison  R.J.  Jacobsen  K.L. 《Plant and Soil》1997,196(1):81-99
Pools and annual fluxes of carbon (C) were estimated for a mature Eucalyptus pauciflora (snowgum) forest with and without phosphorus (P) fertilizer addition to determine the effect of soil P availability on allocation of C in the stand. Aboveground biomass was estimated from allometric equations relating stem and branch diameters of individual trees to their biomass. Biomass production was calculated from annual increments in tree diameters and measurements of litterfall. Maintenance and construction respiration were calculated for each component using equations given by Ryan (1991a). Total belowground C flux was estimated from measurements of annual soil CO2 efflux less the C content of annual litterfall (assuming forest floor and soil C were at approximate steady state for the year that soil CO2 efflux was measured). The total C content of the standing biomass of the unfertilized stand was 138 t ha-1, with approximately 80% aboveground and 20% belowground. Forest floor C was 8.5 t ha-1. Soil C content (0–1 m) was 369 t ha-1 representing 70% of the total C pool in the ecosystem. Total gross annual C flux aboveground (biomass increment plus litterfall plus respiration) was 11.9 t ha-1 and gross flux belowground (coarse root increment plus fine root production plus root respiration) was 5.1 t ha-1. Total annual soil efflux was 7.1 t ha-1, of which 2.5 t ha-1 (35%) was contributed by litter decomposition.The short-term effect of changing the availability of P compared with C on allocation to aboveground versus belowground processes was estimated by comparing fertilized and unfertilized stands during the year after treatment. In the P-fertilized stand annual wood biomass increment increased by 30%, there was no evidence of change in canopy biomass, and belowground C allocation decreased by 19% relative to the unfertilized stand. Total annual C flux was 16.97 and 16.75 t ha-1 yr-1 and the ratio of below- to aboveground C allocation was 0.43 and 0.35 in the unfertilized and P-fertilized stands, respectively. Therefore, the major response of the forest stand to increased soil P availability appeared to be a shift in C allocation; with little change in total productivity. These results emphasise that both growth rate and allocation need to be estimated to predict changes in fluxes and storage of C in forests that may occur in response to disturbance or climate change.  相似文献   

10.
Natural forests in South‐East Asia have been extensively converted into other land‐use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large‐scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal) in above‐ and belowground tree biomass in land‐use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above‐ and belowground carbon pools in tree biomass together with NPPtotal in natural old‐growth forests, ‘jungle rubber’ agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land‐use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha?1) was more than two times higher than in jungle rubber stands (147 Mg ha?1) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha?1). NPPtotal was higher in the natural forest (24 Mg ha?1 yr?1) than in the rubber systems (20 and 15 Mg ha?1 yr?1), but was highest in the oil palm system (33 Mg ha?1 yr?1) due to very high fruit production (15–20 Mg ha?1 yr?1). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha?1) but also in carbon sequestration as carbon residence time (i.e. biomass‐C:NPP‐C) was 3–10 times higher in the natural forest than in rubber and oil palm plantations.  相似文献   

11.
The importance of species richness to ecosystem functioning and services is a central tenet of biological conservation. However, most of our theory and mechanistic understanding is based on diversity found aboveground. Our study sought to better understand the relationship between diversity and belowground function by studying root biomass across a plant diversity gradient. We collected soil cores from 91 plots with between 1 and 12 aboveground tree species in three natural secondary forests to measure fine root (≤ 2 mm in diameter) biomass. Molecular methods were used to identify the tree species of fine roots and to estimate fine root biomass for each species. This study tested whether the spatial root partitioning (species differ by belowground territory) and symmetric growth (the capacity to colonize nutrient-rich hotspots) underpin the relationship between aboveground species richness and fine root biomass. All species preferred to grow in nutrient-rich areas and symmetric growth could explain the positive relationship between aboveground species richness and fine root biomass. However, symmetric growth only appeared in the nutrient-rich upper soil layer (0–10 cm). Structural equation modelling indicated that aboveground species richness and stand density significantly affected fine root biomass. Specifically, fine root biomass depended on the interaction between aboveground species richness and stand density, with fine root biomass increasing with species richness at lower stand density, but not at higher stand density. Overall, evidence for spatial (i.e. vertical) root partitioning was inconsistent; assumingly any roots growing into deeper unexplored soil layers were not sufficient contributors to the positive diversity–function relationship. Alternatively, density-dependent biotic interactions affecting tree recruitment are an important driver affecting productivity in diverse subtropical forests but the usual root distribution patterns in line with the spatial root partitioning hypothesis are unrealistic in contexts where soil nutrients are heterogeneously distributed.  相似文献   

12.
Quantification of carbon budgets and cycling in Japanese cedar (Cryptomeria japonica D. Don) plantations is essential for understanding forest functions in Japan because these plantations occupy about 20% of the total forested area. We conducted a biometric estimate of net ecosystem production (NEP) in a mature Japanese cedar plantation beneath a flux tower over a 4-year period. Net primary production (NPP) was 7.9 Mg C ha−1 year−1 and consisted mainly of tree biomass increment and aboveground litter production. Respiration was calculated as 6.8 (soil) and 3.3 (root) Mg C ha−1 year−1. Thus, NEP in the plantation was 4.3 Mg C ha−1 year−1. In agreement with the tower-based flux findings, this result suggests that the Japanese cedar plantation was a strong carbon sink. The biometric-based NEP was higher among most other types of Japanese forests studied. Carbon sequestration in the mature plantation was characterized by a larger increment in tree biomass and lower mortality than in natural forests. Land-use change from natural forest to Japanese cedar plantation might, therefore, stimulate carbon sequestration and change the carbon allocation of NPP from an increment in coarse woody debris to an increase in tree biomass.  相似文献   

13.
The effects of swidden cultivation on carbon storage and soil quality are outlined and compared to the effects of the intensified production systems that swidden systems of Southeast Asia transform into. Time-averaged aboveground carbon stocks decline by about 90% if the long fallow periods of traditional swidden cultivation are reduced to 4 years and by about 60% if swidden cultivation is converted to oil palm plantations. Stocks of soil organic carbon (SOC) in tree plantations are 0–40% lower than stocks in swidden cultivation, with the largest losses found in mechanically established oil palm plantations. Impacts of tree plantations on soil quality are to a large extent determined by management. Conversion of swiddening to continuous annual cropping systems brings about substantial losses of time-averaged aboveground carbon stocks, reductions of SOC stocks and generally leads to declining soil quality. Knowledge of carbon storage in belowground biomass of tree based systems of the tropics is sparse but failure to include this pool in carbon inventories may significantly underestimate the total biomass of the systems. Moreover, studies that consider the ecological reasons behind farmers’ land use decisions as well as spatial variability in biogeophysical and edaphological parameters are needed to evaluate the effects of the ongoing land use transitions in Southeast Asia.  相似文献   

14.
Trees with sufficient nutrition are known to allocate carbon preferentially to aboveground plant parts. Our global study of 49 forests revealed an even more fundamental carbon allocation response to nutrient availability: forests with high-nutrient availability use 58?±?3% (mean?±?SE; 17 forests) of their photosynthates for plant biomass production (BP), while forests with low-nutrient availability only convert 42?±?2% (mean?±?SE; 19 forests) of annual photosynthates to biomass. This nutrient effect largely overshadows previously observed differences in carbon allocation patterns among climate zones, forest types and age classes. If forests with low-nutrient availability use 16?±?4% less of their photosynthates for plant growth, what are these used for? Current knowledge suggests that lower BP per unit photosynthesis in forests with low- versus forests with high-nutrient availability reflects not merely an increase in plant respiration, but likely results from reduced carbon allocation to unaccounted components of net primary production, particularly root symbionts.  相似文献   

15.
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
The pattern of carbon (C) allocation across different stages of stand development of Chinese pine (Pinus tabulaeformis) forests is poorly documented. In order to understand the effects of stand age on the C pool of the Chinese pine forest ecosystem, we have examined the above- and belowground C pools in three differently aged stands of Chinese pine in the northern mountains of Beijing, China, by plot-level inventories and destructive sampling. Our results suggest that tree branch and foliage biomass should be estimated by age-specific equations. Reasonably accurate estimates of tree stem, tree root, aboveground, and total tree biomass in a Chinese pine forest at different development stages were obtained using age-independent allometric equations from tree diameter only. The ratio of belowground to aboveground tree biomass was relatively constant with stand aging, remaining around 21?%. The contribution of aboveground tree biomass C increased from 21?% of the total ecosystem C in a 25-year-old stand to 44?% in a 65-year-old stand, subsequently falling to 41?% in a 105-year-old stand, while the contribution of mineral soil C decreased from 64?% of the total ecosystem C in 25-year-old stand to 38?% in a 65-year-old stand, subsequently increasing to 41?% in a 105-year-old stand. The C stock of the total ecosystem and its aboveground tree, tree root, forest floor, and mineral soil components continuously increased with stand ageing, whereas the C stock of the understory showed a declining trend and contributed little to the total site C pool.  相似文献   

17.
Patterns of both above- and belowground biomass and production were evaluated using published information from 200 individual data-sets. Data sets were comprised of the following types of information: organic matter storage in living and dead biomass (e.g. surface organic horizons and soil organic matter accumulations), above- and belowground net primary production (NPP) and biomass, litter transfers, climatic data (i.e. precipitation and temperature), and nutrient storage (N, P, Ca, K) in above- and belowground biomass, soil organic matter and litter transfers. Forests were grouped by climate, foliage life-span, species and soil order. Several climatic and nutrient variables were regressed against fine root biomass or net primary production to determine what variables were most useful in predicting their dynamics. There were no significant or consistent patterns for above- and belowground biomass accumulation or NPP change across the different climatic forest types and by soil order. Similarly, there were no consistent patterns of soil organic matter (SOM) accumulation by climatic forest type but SOM varied significantly by soil order—the chemistry of the soil was more important in determining the amount of organic matter accumulation than climate. Soil orders which were high in aluminum, iron, and clay (e.g. Ultisols, Oxisols) had high total living and dead organic matter accumulations-especially in the cold temperate zone and in the tropics. Climatic variables and nutrient storage pools (i.e. in the forest floor) successfully predicted fine root NPP but not fine root biomass which was better predicted by nutrients in litterfall. The importance of grouping information by species based on their adaptive strategies for water and nutrient-use is suggested by the data. Some species groups did not appear to be sensitive to large changes in either climatic or nutrient variables while for others these variables explained a large proportion of the variation in fine root biomass and/or NPP.  相似文献   

18.
The underground part of a tree is an important carbon sink in forest ecosystems. Understanding biomass allocation between the below‐ and aboveground parts (root:shoot ratios) is necessary for estimation of the underground biomass and carbon pool. Nevertheless, large‐scale biomass allocation patterns and their control mechanisms are not well identified. In this study, a large database of global forests at the community level was compiled to investigate the root:shoot ratios and their responses to environmental factors. The results indicated that both the aboveground biomass (AGB) and belowground biomass (BGB) of the forests in China (medians 73.0 Mg/ha and 17.0 Mg/ha, respectively) were lower than those worldwide (medians 120.3 Mg/ha and 27.7 Mg/ha, respectively). The root:shoot ratios of the forests in China (median = 0.23), however, were not significantly different from other forests worldwide (median = 0.24). In general, the allocation of biomass between the belowground and aboveground parts was determined mainly by the inherent allometry of the plant but also by environmental factors. In this study, most correlations between root:shoot ratios and environmental factors (development parameter, climate, altitude, and soil) were weak but significant (< .01). The allometric model agreed with the trends observed in this study and effectively estimated BGB based on AGB across the entire database.  相似文献   

19.
We show the potential of a new method combining tree-ring analyses on stems and on coarse roots of individual trees in order to advance the understanding of growth dynamics in forest trees. To this end, we studied the root–shoot allometry of trees and its dependence on site conditions. Along a gradient in water supply in Southern Germany from dry to moist sites we selected 43 Norway spruce trees (Picea abies [L.] H. Karst.) aged 65–100 years. Increment cores were taken from stem and main roots revealing aboveground and belowground growth course over the last 34 years. Annual growth rates in roots and stems and their allometric relationships were applied as surrogate variables for tree resource allocation to aboveground and belowground organs. The mean sensitivities of both stem and root chronologies were found to be site-specific, and increased from the moist through the dry sites. No temporal offset between aboveground and belowground growth reactions to climate conditions was found in Norway spruce at any of the sites. These results suggest that the root–shoot allometry depends on the specific site conditions only at the driest site, following the optimal biomass partitioning theory (the more restricted the water supply, the more organic matter allocation into the belowground organs).  相似文献   

20.
Complementary soil exploration by the root systems of coexisting tree species has been hypothesised to result in a higher root biomass of mixed forests than of monocultures but the existing evidence for a belowground diversity effect in forests is scarce and not conclusive. In a species‐rich temperate broad‐leaved forest, we analysed the fine root biomass (roots ≤ 2 mm) and necromass in 100 plots differing in tree species diversity (one to three species) and species composition (all possible combinations of five species of the genera Acer, Carpinus, Fagus, Fraxinus and Tilia) which allowed us to separate possible species diversity and species identity effects on fine root biomass. We found no evidence of a positive diversity effect on standing fine root biomass and thus of overyielding in terms of root biomass. Root necromass decreased with increasing species diversity at marginal significance. Various lines of evidence indicate significant species identity effects on fine root biomass (10–20% higher fine root biomass in plots with presence of maple and beech than in plots with hornbeam; 100% higher fine root biomass in monospecific beech and ash plots than in hornbeam plots; differences significant). Ash fine roots tended to be over‐represented in the 2‐ and 3‐species mixed plots compared to monospecific ash plots pointing at apparent belowground competitive superiority of Fraxinus in this mixed forest. Our results indicate that belowground overyielding and spatial complementarity of root systems may be the exception rather than the rule in temperate mixed forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号