首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has beneficial effects in the prevention of cardiovascular disease. Autophagy is a cellular process that protects cells from stressful conditions. To determine whether the beneficial effect of EGCG is mediated by a mechanism involving autophagy, the roles of the EGCG-stimulated autophagy in the context of ectopic lipid accumulation were investigated. Treatment with EGCG increased formation of LC3-II and autophagosomes in primary bovine aortic endothelial cells (BAEC). Activation of calmodulin-dependent protein kinase kinase β was required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation was significantly impaired by knockdown of calmodulin-dependent protein kinase kinase β. This effect is most likely due to cytosolic Ca2+ load. To determine whether EGCG affects palmitate-induced lipid accumulation, the effects of EGCG on autophagic flux and co-localization of lipid droplets and autophagolysosomes were examined. EGCG normalized the palmitate-induced impairment of autophagic flux. Accumulation of lipid droplets by palmitate was markedly reduced by EGCG. Blocking autophagosomal degradation opposed the effect of EGCG in ectopic lipid accumulation, suggesting the action of EGCG is through autophagosomal degradation. The mechanism for this could be due to the increased co-localization of lipid droplets and autophagolysosomes. Co-localization of lipid droplets with LC3 and lysosome was dramatically increased when the cells were treated with EGCG and palmitate compared with the cells treated with palmitate alone. Collectively, these findings suggest that EGCG regulates ectopic lipid accumulation through a facilitated autophagic flux and further imply that EGCG may be a potential therapeutic reagent to prevent cardiovascular complications.  相似文献   

2.
3.
Autophagy is associated with regulation of both the survival and death of neurons, and has been linked to many neurodegenerative diseases. Postoperative cognitive dysfunction is commonly observed in elderly patients following anesthesia, but the pathophysiological mechanisms are largely unexplored. Similar effects have been found in aged rats under sevoflurane anesthesia; however, the role of autophagy in sevoflurane anesthesia-induced hippocampal neuron apoptosis of older rats remains elusive. The present study was designed to investigate the effects of autophagy on the sevoflurane-induced cognitive dysfunction in aged rats, and to identify the role of autophagy in sevoflurane-induced neuron apoptosis. We used 20-month-old rats under sevoflurane anesthesia to study memory performance, neuron apoptosis, and autophagy. The results demonstrated that sevoflurane anesthesia significantly impaired memory performance and induced hippocampal neuron apoptosis. Interestingly, treatment of rapamycin, an autophagy inducer, improved the cognitive deficit observed in the aged rats under sevoflurane anesthesia by improving autophagic flux. Rapamycin treatment led to the rapid accumulation of autophagic bodies and autophagy lysosomes, decreased p62 protein levels, and increased the ratio of microtubule-associated protein light chain 3 II (LC3-II) to LC3-I in hippocampal neurons through the mTOR signaling pathway. However, administration of an autophagy inhibitor (chloroquine) attenuated the autophagic flux and increased the severity of sevoflurane anesthesia-induced neuronal apoptosis and memory impairment. These findings suggest that impaired autophagy in the hippocampal neurons of aged rats after sevoflurane anesthesia may contribute to cognitive impairment. Therefore, our findings represent a potential novel target for pro-autophagy treatments in patients with sevoflurane anesthesia-induced neurodegeneration.  相似文献   

4.
One of the neuropathological hallmarks of Alzheimer’s disease (AD) is the accumulation of beta-amyloid peptides (Aβ) in senile plaques. Aβ-induced oxidative stress is believed to be responsible for degeneration and apoptosis of neurons and consequent cognitive and memory deficits. Here, we investigated the possible neuroprotective effect of the heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) against amyloid pathogenesis in adult male Wistar rats. GA or vehicle was injected into the lateral cerebral ventricles of rats 24 h before injection of Aβ (1–42) in CA1 area of hippocampus. The learning and memory of the rats were assessed 7 days after injection of Aβ using passive avoidance (PA) task. As potential contributing factors in Aβ-induced memory decline, we evaluated apoptotic markers and also used terminal-transferase UTP nick end labeling (TUNEL) technique to detect apoptosis in the hippocampus of Aβ-injected rats. Our behavioral data suggest that GA pretreatment can significantly suppress memory deficits in Aβ-injected rats. There was also not only a marked increase in Hsp70 level but also upregulated 70 kDa ribosomal protein S6 kinase (p70S6K) in the hippocampus of GA-treated groups with a reduction in apoptotic factors including caspase-3, poly (ADP-ribose) polymerase, Bax/Bcl-2 ratio, and TUNEL-positive cells as well. Thus, we conclude that GA exerts its protective effects against Aβ (1–42) toxicity and memory deficits, at least in part, by upregulating of Hsp70 and P70S6K.  相似文献   

5.
Morphine abuse in treating severe and chronic pain has become a worldwide problem. But, chronic morphine exposure can cause memory impairment with its mechanisms not fully elucidated by past research sstudies which all focused on the harmful effects of morphine. Autophagy is an important pathway for cells to maintain survival. Here we showed that repeated morphine injection into C57BL/6 mice at a dose of 15 mg/kg per day for 7 days activated autophagic flux mainly in the hippocampi, especially in neurons of hippocampal CA1 region and microglia, with spatial memory impairment confirmed by Morris water maze test. Autophagy inhibition by 3-methyladenine obviously aggravates this morphine-induced memory impairment, accompanied with increased cell deaths in stratum pyramidale of hippocampal CA1, CA3, and DG regions and the activation of microglia to induce inflammation in hippocampus, such as upregulated expression of TNF-α, IL-1β, IL-6, and iNOS, as well as NF-κB’ s activation, while morphine alone promoted microglial immunosuppression in hippocampus with autophagy activation which was also confirmed in primary microglia. Taken together, our data indicates that autophagy activating in hippocampal cells can alleviate the memory impairment caused by morphine, by decreasing neuronal deaths in hippocampus and suppressing inflammation in hippocampal microglia, implying that modulating the activation of autophagy might be a promising method to prevent or treat the memory impairment caused by morphine.  相似文献   

6.
The impairment of autophagic flux has been widely recognized in myocardial ischemia-reperfusion (I/R) injury, but its underlying mechanism contributing to impaired autophagic flux is poorly understood. As celluar major degradation systems, autophagy and ubiquitin proteasome system (UPS) participate in the multitudinous progression of disease by interactive relationship. Especially UBE2D3, one of the ubiquitin-binding enzyme E2 family, is closely related to the regulation impairment of autophagic flux under I/R in our study. Therefore, this study aims to further explore the regulatory mechanism of UBE2D3 in I/R induced autophagy. We determined interference with UBE2D3 alleviated injury of myocardial cells both in vivo and in vitro. Conversely, when inhibiting proteasome function by injecting MG-132, myocardial infarct size of rats became increasingly enhanced, along with the high expression levels of LDH and CK-MB in serum, compared with myocardial I/R injury without treatment of MG-132. This had been caused by UBE2D3 promoting p62/SQSTM1(p62) ubiquitination(Ub), which lead to worsen the impairment of autophagic flux induced by myocardial I/R injury. In addition, UBE2D3 could also participate in the regulation of autophagy by negatively regulating mTOR. But more surprisingly, this mechanism was independent of the known mTOR-beclin1 pathway. These results suggested that in myocardial I/R injury, UBE2D3 promoted p62 ubiquitination to aggravate the impairment of autophagic flux. Moreover, mTOR was also involved in its regulation of autophagic flux in a way escaped from beclin1.  相似文献   

7.
为了探讨CRF在抑郁症发生发展过程中的作用.对正常大鼠侧脑室慢性注射CRF21天并与慢性非预见性应激刺激21天建立的抑郁症模型大鼠进行比较。运用旷场行为实验(open-field)观察大鼠主动性活动能力.用Morris water Maze法.以训练期的逃避潜伏期为指标检测大鼠空间学习记忆能力。采用HPLC—UV法测定血清皮质醇含量,RT—PCR法检测CRF及其受体mRNA的表达。结果显示:慢性应激21天建立的模型大鼠主动性活动和学习记忆能力均明显下降.血清皮质醇含量显著升高,CRF及其受体R1 mRNA的表达增加。大鼠侧脑室慢性注射CRF21天后.其体重增量、主动性活动和学习记忆能力与慢性应激模型大鼠一样均明显降低。这些工作证明了CRF在抑郁症的发生发展过程中发挥了至关重要的作用.慢性应激导致机体CRF分泌持续增加可能是抑郁症发病的主要原因。  相似文献   

8.
Niemann-Pick type C (NPC) disease is characterized by the lysosomal accumulation of cholesterols and impaired autophagic flux due to the inhibited fusion of autophagosomes to lysosomes. We have recently developed β-cyclodextrin (β-CD)-threaded biocleavable polyrotaxanes (PRXs), which can release threaded β-CDs in response to intracellular environments as a therapeutic for NPC disease. The biocleavable PRXs exhibited effective cholesterol reduction ability and negligible toxic effect compared with hydroxypropyl-β-CD (HP-β-CD). In this study, we investigated the effect of biocleavable PRX and HP-β-CD on the impaired autophagy in NPC disease. The NPC patient-derived fibroblasts (NPC1 fibroblasts) showed an increase in the number of LC3-positive puncta compared with normal fibroblasts, even in the basal conditions; the HP-β-CD treatment markedly increased the number of LC3-positive puncta and the levels of p62 in NPC1 fibroblasts, indicating that autophagic flux was further perturbed. In sharp contrast, the biocleavable PRX reduced the number of LC3-positive puncta and the levels of p62 in NPC1 fibroblasts through an mTOR-independent mechanism. The mRFP-GFP-LC3 reporter gene expression experiments revealed that the biocleavable PRX facilitated the formation of autolysosomes to allow for autophagic protein degradation. Therefore, the β-CD-threaded biocleavable PRXs may be promising therapeutics for ameliorating not only cholesterol accumulation but also autophagy impairment in NPC disease.  相似文献   

9.
Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA) induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA) in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1) establishing a model of CA in nine month old middle-aged rats; and 2) to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning) and field recordings (long-term potentiation and paired-pulse facilitation) were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction.  相似文献   

10.
To explore the role of autophagic flux in the increased susceptibility of the experimental diabetic heart to ischaemia‐reperfusion (I/R) injury, we established STZ‐induced diabetic mice and performed I/R. In vitro, neonatal mouse cardiomyocytes were subjected to high glucose and hypoxia/reoxygenation challenge to mimic diabetic I/R injury. We found that experimental diabetes aggravated I/R‐induced injury than compared with nondiabetic mice. Autophagic flux was impaired in I/R hearts, and the impairment was exacerbated in diabetic mice subjected to I/R with defective autophagosome formation and clearance. Calpains, calcium‐dependent thiol proteases, were upregulated and highly activated after I/R of diabetes, while calpain inhibition attenuated cardiac function and cell death and partially restored autophagic flux. The expression levels of Atg5 and LAMP2, two crucial autophagy‐related proteins, were significantly degraded in diabetic I/R hearts, alterations that were associated with calpain activation and could be reversed by calpain inhibition. Co‐overexpression of Atg5 and LAMP2 reduced myocardial injury and normalized autophagic flux. In conclusion, experimental diabetes exacerbates autophagic flux impairment of cardiomyocytes under I/R stress, resulting in worse I/R‐induced injury. Calpain activation and cleavage of Atg5 and LAMP2 at least partially account for the deterioration of autophagic flux impairment.  相似文献   

11.
(-)-Epigallocatechin-3-O-gallate(EGCG), the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX) in hepatocellular carcinoma (HCC) treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3) expressions was consistent with thus combined usage in vitro. Taken together, the current study suggested that EGCG emerges as a chemotherapeutic augmenter and synergistically enhances DOX anticancer effects involving autophagy inhibition in HCC.  相似文献   

12.
13.
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.  相似文献   

14.
慢性复合应激增强大鼠空间学习和记忆能力   总被引:23,自引:0,他引:23  
Liu NB  Li H  Liu XQ  Sun CY  Cheng SR  Zhang MH  Liu SC  Wang WX 《生理学报》2004,56(5):615-619
本文观察了慢性复合应激对大鼠学习与记忆功能的影响。实验采用成年 Wistar 大鼠, 将其随机分成应激组和对照组。采用垂直旋转、睡眠剥夺、噪音刺激和夜间光照4 种应激原, 无规律地交替刺激动物 6 周, 每天6 h, 制作慢性复合应激动物模型。采用 Morris 水迷宫和 Y- 迷宫测试大鼠学习与记忆成绩,并用 Cresyl violet 染色法对大鼠海马结构进行神经细胞计数。结果显示,应激组动物慢性复合应激后, 在 Morris 水迷宫内寻找隐蔽平台所需的时间(潜伏期)比对照组的明显地短(P<0.05), 表明应激鼠的空间记忆能力明显强于对照鼠;在 Y- 迷宫内寻找安全区的正确率比对照组的明显地高(P<0.05), 表明应激鼠的明暗分辨学习能力明显强于对照鼠; 应激鼠慢性复合应激后, 其海马结构齿状回、CA3 和CA1 区神经细胞密度极明显地高于对照鼠(P<0.001)。这些结果提示, 慢性复合应激可增强大鼠空间记忆能力和明暗分辨学习能力。本文并对慢性复合应激模式增强大鼠学习和记忆能力的可能原因进行了讨论。  相似文献   

15.
Xi G  Hui J  Zhang Z  Liu S  Zhang X  Teng G  Chan KC  Wu EX  Nie B  Shan B  Li L  Reynolds GP 《PloS one》2011,6(12):e28686
It is generally accepted that cognitive processes, such as learning and memory, are affected in depression. The present study used a rat model of depression, chronic unpredictable mild stress (CUMS), to determine whether hippocampal volume and neurochemical changes were involved in learning and memory alterations. A further aim was to determine whether these effects could be ameliorated by escitalopram treatment, as assessed with the non-invasive techniques of structural magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Our results demonstrated that CUMS had a dramatic influence on spatial cognitive performance in the Morris water maze task, and CUMS reduced the concentration of neuronal marker N-acetylaspartate (NAA) in the hippocampus. These effects could be significantly reversed by repeated administration of escitalopram. However, neither chronic stress nor escitalopram treatment influenced hippocampal volume. Of note, the learning and memory alterations of the rats were associated with right hippocampal NAA concentration. Our results indicate that in depression, NAA may be a more sensitive measure of cognitive function than hippocampal volume.  相似文献   

16.
The developing brain is vulnerable to environmental factors. We investigated the effects of air that contained 0.05, 0.1 and 0.3% CO2 on the hippocampus, prefrontal cortex (PFC) and amygdala. We focused on the circuitry involved in the neurobiology of anxiety, spatial learning, memory, and on insulin-like growth factor-1 (IGF-1), which is known to play a role in early brain development in rats. Spatial learning and memory were impaired by exposure to 0.3% CO2 air, while exposure to 0.1 and 0.3% CO2 air elevated blood corticosterone levels, intensified anxiety behavior, increased superoxide dismutase (SOD) enzyme activity and MDA levels in hippocampus and PFC; glutathione peroxidase (GPx) enzyme activity decreased in the PFC with no associated change in the hippocampus. IGF-1 levels were decreased in the blood, PFC and hippocampus by exposure to both 0.1 and 0.3% CO2. In addition, apoptosis was increased, while cell numbers were decreased in the CA1 regions of hippocampus and PFC after 0.3% CO2 air exposure in adolescent rats. A positive correlation was found between the blood IGF-1 level and apoptosis in the PFC. We found that chronic exposure to 0.3% CO2 air decreased IGF-1 levels in the serum, hippocampus and PFC, and increased oxidative stress. These findings were associated with increased anxiety behavior, and impaired memory and learning.  相似文献   

17.
The mammalian target of rapamycin (mTOR) pathway has multiple important physiological functions, including regulation of protein synthesis, cell growth, autophagy, and synaptic plasticity. Activation of mTOR is necessary for the many beneficial effects of brain-derived neurotrophic factor (BDNF), including dendritic translation and memory formation in the hippocampus. At present, however, the role of mTOR in BDNF''s support of survival is not clear. We report that mTOR activation is necessary for BDNF-dependent survival of primary rat hippocampal neurons, as either mTOR inhibition by rapamycin or genetic manipulation of the downstream molecule p70S6K specifically blocked BDNF rescue. Surprisingly, however, BDNF did not promote neuron survival by up-regulating mTOR-dependent protein synthesis or through mTOR-dependent suppression of caspase-3 activation. Instead, activated mTOR was responsible for BDNF''s suppression of autophagic flux. shRNA against the autophagic machinery Atg7 or Atg5 prolonged the survival of neurons co-treated with BDNF and rapamycin, suggesting that suppression of mTOR in BDNF-treated cells resulted in excessive autophagy. Finally, acting as a physiological analog of rapamycin, IL-1β impaired BDNF signaling by way of inhibiting mTOR activation as follows: the cytokine induced caspase-independent neuronal death and accelerated autophagic flux in BDNF-treated cells. These findings reveal a novel mechanism of BDNF neuroprotection; BDNF not only prevents apoptosis through inhibiting caspase activation but also promotes neuron survival through modulation of autophagy. This protection mechanism is vulnerable under chronic inflammation, which deregulates autophagy through impairing mTOR signaling. These results may be relevant to age-related changes observed in neurodegenerative diseases.  相似文献   

18.
Alzheimer’s disease (AD) fundamentally represents a metabolic disease associated with brain insulin resistance. TNF-α/c-Jun N-terminal kinase (JNK) signaling plays a central role in serine phosphorylation of insulin receptor substrate-1 (IRS-1). (?)-Epigallocatechin-3-gallate (EGCG), a potent antioxidant, has been verified to attenuate peripheral insulin resistance by reducing IRS-1 signaling blockage. This study aimed to investigate the effects and possible mechanisms of EGCG on central IRS-1 signaling in vivo. APP/PS1 mice were treated with EGCG, and spatial memory was assessed by the Morris water maze test. Levels of soluble and insoluble Aβ42 in the hippocampus were determined by ELISA. The activation of NF-α/JNK and IRS signaling was detected by immunohistochemistry and Western blot analysis. Our results showed that EGCG ameliorated the impaired learning and memory in APP/PS1 mice. Notably, we found a significant reduction of IRS-1pS636 level accompanied with decreased Aβ42 levels in the hippocampus of 13-month-old female APP/PS1 mice after treatment with EGCG (2 or 6 mg/kg/day) for 4 weeks. Furthermore, EGCG treatment inhibited TNF-α/JNK signaling and increased the phosphorylation of Akt and glycogen synthase kinase-3β in the hippocampus of APP/PS1 mice. In conclusion, our study provides evidence that long-term consumption of EGCG may alleviate AD-related cognitive deficits by effectively attenuating central insulin resistance.  相似文献   

19.
Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.  相似文献   

20.
Tan T  Zhang BL  Tian X 《生理学报》2011,63(3):225-232
突触传递的长时程抑制(long-term depression,LTD)和长时程增强(longterm-potentiation,LTP)是突触可塑性的两种重要形式,并且与学习记忆密切相关.本文探讨Sprague-Dawley(SD)大鼠在海马齿状回区(dentate gyrus,DG)注射36 h孵育形成的寡聚体Aβ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号