首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor guanylyl cyclases respond to ligand stimulation by increasing intracellular cGMP, thereby initiating a variety of cell-signaling pathways. Furthermore, these proteins are differentially localized at the apical and basolateral membranes of epithelial cells. We have identified a region of 11 amino acids in the cytosolic COOH terminus of guanylyl cyclase C (GCC) required for normal apical localization in Madin-Darby canine kidney (MDCK) cells. These amino acids share no significant sequence homology with previously identified cytosolic apical sorting determinants. However, these amino acids are highly conserved and are sufficient to confer apical polarity to the interleukin-2 receptor alpha-chain (Tac). Additionally, we find two molecular weight species of GCC in lysates prepared from MDCK cells over-expressing GCC but observe only the fully mature species on the cell surface. Using pulse-chase analysis in polarized MDCK cells, we followed the generation of this mature species over time finding it to be detectable only at the apical cell surface. These data support the hypothesis that selective apical sorting can be determined using short, cytosolic amino acid motifs and argue for the existence of apical sorting machinery comparable with the machinery identified for basolateral protein traffic.  相似文献   

2.
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.  相似文献   

3.
Signal transduction histidine kinases (STHK) are key for sensing environmental stresses, crucial for cell survival, and attain their sensing ability using small molecule binding domains. The N-terminal domain in an STHK from Nostoc punctiforme is of unknown function yet is homologous to the central region in soluble guanylyl cyclase (sGC), the main receptor for nitric oxide (NO). This domain is termed H-NOXA (or H-NOBA) because it is often associated with the heme-nitric oxide/oxygen binding (H-NOX) domain. A structure-function approach was taken to investigate the role of H-NOXA in STHK and sGC. We report the 2.1 A resolution crystal structure of the dimerized H-NOXA domain of STHK, which reveals a Per-Arnt-Sim (PAS) fold. The H-NOXA monomers dimerize in a parallel arrangement juxtaposing their N-terminal helices and preceding residues. Such PAS dimerization is similar to that previously observed for EcDOS, AvNifL, and RmFixL. Deletion of 7 N-terminal residues affected dimer organization. Alanine scanning mutagenesis in sGC indicates that the H-NOXA domains of sGC could adopt a similar dimer organization. Although most putative interface mutations did decrease sGCbeta1 H-NOXA homodimerization, heterodimerization of full-length heterodimeric sGC was mostly unaffected, likely due to the additional dimerization contacts of sGC in the coiled-coil and catalytic domains. Exceptions are mutations sGCalpha1 F285A and sGCbeta1 F217A, which each caused a drastic drop in NO stimulated activity, and mutations sGCalpha1 Q368A and sGCbeta1 Q309A, which resulted in both a complete lack of activity and heterodimerization. Our structural and mutational results provide new insights into sGC and STHK dimerization and overall architecture.  相似文献   

4.
Soluble guanylyl cyclase (sGC) is an alpha/beta-heterodimeric hemoprotein that, upon interaction with the intercellular messenger molecule NO, generates cGMP. Although the related family of particulate guanylyl cyclases (pGCs) forms active homodimeric complexes, it is not known whether homodimerization of sGC subunits occurs. We report here the expression in Sf9 cells of glutathione S-transferase-tagged recombinant human sGCalpha1 and beta1 subunits, applying a novel and rapid purification method based on GSH-Sepharose affinity chromatography. Surprisingly, in intact Sf9 cells, both homodimeric GSTalpha/alpha and GSTbeta/beta complexes were formed that were catalytically inactive. Upon coexpression of the respective complementary subunits, GSTalpha/beta or GSTbeta/alpha heterodimers were preferentially formed, whereas homodimers were still detectable. When subunits were mixed after expression, e.g. GSTbeta and beta or GSTalpha and beta, no dimerization was observed. In conclusion, our data suggest the previously unrecognized possibility of a physiological equilibrium between homo- and heterodimeric sGC complexes.  相似文献   

5.
Ca(2+)-binding guanylyl cyclase-activating proteins (GCAPs) stimulate photoreceptor membrane guanylyl cyclase (retGC) in the light when the free Ca(2+) concentrations in photoreceptors decrease from 600 to 50 nM. RetGC activated by GCAPs exhibits tight dimerization revealed by chemical cross-linking (Yu, H., Olshevskaya, E., Duda, T., Seno, K., Hayashi, F., Sharma, R. K., Dizhoor, A. M., and Yamazaki, A. (1999) J. Biol. Chem. 274, 15547-15555). We have found that the Ca(2+)-loaded GCAP-2 monomer undergoes reversible dimerization upon dissociation of Ca(2+). The ability of GCAP-2 and its several mutants to activate retGC in vitro correlates with their ability to dimerize at low free Ca(2+) concentrations. A constitutively active GCAP-2 mutant E80Q/E116Q/D158N that stimulates retGC regardless of the free Ca(2+) concentrations forms dimers both in the absence and in the presence of Ca(2+). Several GCAP-2/neurocalcin chimera proteins that cannot efficiently activate retGC in low Ca(2+) concentrations are also unable to dimerize in the absence of Ca(2+). Additional mutation that restores normal activity of the GCAP-2 chimera mutant also restores its ability to dimerize in the absence of Ca(2+). These results suggest that dimerization of GCAP-2 can be a part of the mechanism by which GCAP-2 regulates the photoreceptor guanylyl cyclase. The Ca(2+)-free GCAP-1 is also capable of dimerization in the absence of Ca(2+), but unlike GCAP-2, dimerization of GCAP-1 is resistant to the presence of Ca(2+).  相似文献   

6.
Cyclic GMP (cGMP) and Ca(2+) regulate opposing mechanisms in (patho)physiological processes reflected in the reciprocal regulation of their intracellular concentrations. Although mechanisms by which cGMP regulates [Ca(2+)](i) have been described, those by which Ca(2+) regulates [cGMP](i) are less well understood. In the present study, Ca(2+) inhibited purified sGC activated by sodium nitroprusside (SNP), a precursor of nitric oxide (NO), employing Mg-GTP as substrate in a concentration-dependent fashion, but was without effect on basal enzyme activity. Ca(2+) inhibited sGC stimulated by protoporphyrin IX or YC-1 suggesting that inhibition was not NO-dependent. In contrast, Ca(2+) was without effect on sGC activated by SNP employing Mn-GTP as substrate, demonstrating that inhibition did not reflect displacement of heme from sGC. Ligand activation of sGC unmasked negative allosteric sites of high (K(i) similar 10(-7) M) and low (K(i) approximately 10(-5) M) affinity for Ca(2+) that mediated noncompetitive and uncompetitive inhibition, respectively. Free Mg(2+) in excess of substrate did not alter the concentration-response relationship of Ca(2+) inhibition at high affinity sites, but produced a rightward shift in that relationship at low affinity sites. Similarly, Ca(2+) inhibition at high affinity sites was noncompetitive, whereas inhibition at low affinity sites was competitive, with respect to free Mg(2+). Purified sGC specifically bound (45)Ca(2+) in the presence of a 1000-fold excess of Mg(2+) and in the absence of activating ligands. These data suggest that sGC is a constitutive Ca(2+) binding protein whose allosteric function is conditionally dependent upon ligand activation.  相似文献   

7.
Mammals express nine membranous adenylyl cyclase isoforms (ACs 1-9), a structurally related soluble guanylyl cyclase (sGC) and a soluble AC (sAC). Moreover, Bacillus anthracis and Bacillus pertussis produce the AC toxins, edema factor (EF), and adenylyl cyclase toxin (ACT), respectively. 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio]triphosphate is a potent competitive inhibitor of AC in S49 lymphoma cell membranes. These data prompted us to study systematically the effects of 24 nucleotides on AC in S49 and Sf9 insect cell membranes, ACs 1, 2, 5, and 6, expressed in Sf9 membranes and purified catalytic subunits of membranous ACs (C1 of AC5 and C2 of AC2), sAC, sGC, EF, and ACT in the presence of MnCl(2). N-Methylanthraniloyl (MANT)-GTP inhibited C1.C2 with a K(i) of 4.2 nm. Phe-889 and Ile-940 of C2 mediate hydrophobic interactions with the MANT group. MANT-inosine 5'-[gamma-thio]triphosphate potently inhibited C1.C2 and ACs 1, 5, and 6 but exhibited only low affinity for sGC, EF, ACT, and G-proteins. Inosine 5'-[gamma-thio]triphosphate and uridine 5'-[gamma-thio]triphosphate were mixed G-protein activators and AC inhibitors. AC5 was up to 15-fold more sensitive to inhibitors than AC2. EF and ACT exhibited unique inhibitor profiles. At sAC, 2',5'-dideoxyadenosine 3'-triphosphate was the most potent compound (IC(50), 690 nm). Several MANT-adenine and MANT-guanine nucleotides inhibited sGC with K(i) values in the 200-400 nm range. UTP and ATP exhibited similar affinities for sGC as GTP and were mixed sGC substrates and inhibitors. The exchange of MnCl(2) against MgCl(2) reduced inhibitor potencies at ACs and sGC 1.5-250-fold, depending on the nucleotide and cyclase studied. The omission of the NTP-regenerating system from cyclase reactions strongly reduced the potencies of MANT-ADP, indicative for phosphorylation to MANT-ATP by pyruvate kinase. Collectively, AC isoforms and sGC are differentially inhibited by purine and pyrimidine nucleotides.  相似文献   

8.
Conformational change in the integrin extracellular domain is required for high affinity ligand binding and is also involved in post-ligand binding cellular signaling. Although there is evidence to the contrary, electron microscopic studies showing that ligand binding triggers alpha- and beta-subunit dissociation in the integrin headpiece have gained popularity and support the hypothesis that head separation activates integrins. To test directly the head separation hypothesis, we enforced head association by introducing disulfide bonds across the interface between the alpha-subunit beta-propeller domain and the beta-subunit I-like domain. Basal and activation-dependent ligand binding by alpha(IIb)beta(3) and alpha(V)beta(3) was unaffected. The covalent linkage prevented dissociation of alpha(IIb)beta(3) into its subunits on EDTA-treated cells. Whereas EDTA dissociated wild type alpha(IIb)beta(3) on the cell surface, a ligand-mimetic Arg-Gly-Asp peptide did not, as judged by binding of complex-specific antibodies. Finally, a high affinity ligand-mimetic compound stabilized noncovalent association between alpha(IIb) and beta(3) headpiece fragments in the presence of SDS, indicating that ligand binding actually stabilized subunit association at the head, as opposed to the suggested subunit separation. The mechanisms of conformational regulation of integrin function should therefore be considered in the context of the associated alphabeta headpiece.  相似文献   

9.
How nitric oxide (NO) activates its primary receptor, α1/β1 soluble guanylyl cyclase (sGC or GC‐1), remains unknown. Likewise, how stimulatory compounds enhance sGC activity is poorly understood, hampering development of new treatments for cardiovascular disease. NO binding to ferrous heme near the N‐terminus in sGC activates cyclase activity near the C‐terminus, yielding cGMP production and physiological response. CO binding can also stimulate sGC, but only weakly in the absence of stimulatory small‐molecule compounds, which together lead to full activation. How ligand binding enhances catalysis, however, has yet to be discovered. Here, using a truncated version of sGC from Manduca sexta, we demonstrate that the central coiled‐coil domain, the most highly conserved region of the ~150,000 Da protein, not only provides stability to the heterodimer but is also conformationally active in signal transduction. Sequence conservation in the coiled coil includes the expected heptad‐repeating pattern for coiled‐coil motifs, but also invariant positions that disfavor coiled‐coil stability. Full‐length coiled coil dampens CO affinity for heme, while shortening of the coiled coil leads to enhanced CO binding. Introducing double mutation αE447L/βE377L, predicted to replace two destabilizing glutamates with leucines, lowers CO binding affinity while increasing overall protein stability. Likewise, introduction of a disulfide bond into the coiled coil results in reduced CO affinity. Taken together, we demonstrate that the heme domain is greatly influenced by coiled‐coil conformation, suggesting communication between heme and catalytic domains is through the coiled coil. Highly conserved structural imperfections in the coiled coil provide needed flexibility for signal transduction.  相似文献   

10.
Accumulating evidence indicates that the functional properties of soluble guanylyl cyclase (sGC) are affected not only by the binding of NO but also by the NO:sGC ratio and a number of cellular factors, including GTP. In this study, we monitored the time-resolved transformations of sGC and sGC-NO complexes generated with stoichiometric or excess NO in the presence and absence of GTP. We demonstrate that the initial five-coordinate sGC-NO complex is highly activated by stoichiometric NO but is unstable and transforms into a five-coordinate sGC-2 state. This sGC-2 rebinds NO to form a low activity sGC-NO complex. The stability of the initial complex is greatly enhanced by GTP binding, binding of an additional NO molecule, or substitution of βHis-107. We propose that the transient nature of the sGC-NO complex, the formation of a desensitized sGC-2 state, and its transformation into a low activity sGC-NO adduct require βHis-107. We conclude that conformational changes leading to sGC desensitization may be prevented by GTP binding to the catalytic site or by binding of an additional NO molecule to the proximal side of the heme. The implications of these observations for cellular NO/cGMP signaling and the process of rapid desensitization of sGC are discussed in the context of the proposed model of sGC/NO interactions and dynamic transformations.  相似文献   

11.
A key challenge in studying protein/protein interactions is to accurately identify contact surfaces, i.e. regions of two proteins that are in direct physical contact. Aside from x-ray crystallography and NMR spectroscopy few methods are available that address this problem. Although x-ray crystallography often provides detailed information about contact surfaces, it is limited to situations when a co-crystal of proteins is available. NMR circumvents this requirement but is limited to small protein complexes. Other methods, for instance protection from proteolysis, are less direct and therefore less informative. Here we describe a new method that identifies candidate contact surfaces in protein complexes. The complexes are first stabilized by cross-linking. They are then digested with a protease, and the cross-linked fragments are analyzed by mass spectrometry. We applied this method, referred to as COSUMAS (contact surfaces by mass spectrometry), to two proteins, retinal guanylyl cyclase 1 (RetGC1) and guanylyl cyclase-activating protein-1 (GCAP-1), that regulate cGMP synthesis in photoreceptors. Two regions in GCAP-1 and three in RetGC1 were identified as possible contact sites. The two regions of RetGC1 that are in the vicinities of Cys(741) and Cys(780) map to a kinase homology domain in RetGC1. Their identities as contact sites were independently evaluated by peptide inhibition analysis. Peptides with sequences from these regions block GCAP-1-mediated regulation of guanylyl cyclase at both high and low Ca2+ concentrations. The two regions of GCAP-1 cross-linked to these peptides were in the vicinities of Cys(17) and Cys(105) of GCAP-1. Peptides with sequences derived from these regions inhibit guanylyl cyclase activity directly. These results support a model in which GCAP-1 binds constitutively to RetGC1 and regulates cyclase activity by structural changes caused by the binding or dissociation of Ca2+.  相似文献   

12.
Soluble guanylyl cyclase was purified from bovine lung by an immunoaffinity chromatographic method using IgG fractions of antisera against a synthetic peptide of the C-terminus of the 70-kDa subunit of the enzyme. After anion-exchange chromatography, the enzyme was bound to an immunoaffinity column and was eluted with the synthetic peptide. This method allowed the convenient isolation of 2 mg of apparently homogeneous enzyme from 40 g cytosolic proteins. The enzyme had an apparent molecular mass of about 150 kDa and consisted of two subunits (70 kDa and 73 kDa) as determined by gel permeation fast protein liquid chromatography and SDS/PAGE. The basal activities determined in the presence of Mg2+ and Mn2+ were 10-20 nmol.min-1.mg-1 and 80-100 nmol.min-1.mg-1, respectively. The enzyme exhibited an ultraviolet-visible absorption spectrum typical for hemoproteins, with a Soret band at 430 nm. The purified enzyme was stimulated by NO-containing compounds. Maximal enzyme activities measured in the presence of sodium nitroprusside were 1.2-2.4 mumol.min-1.mg-1 (half-maximal effect of sodium nitroprusside at 1.3-1.9 microM) and 0.9-1.8 mumol.min-1.mg-1 (half-maximal effect at 0.28-0.41 microM sodium nitroprusside) in the presence of Mg2+ and Mn2+, respectively. The method developed for the large-scale purification of soluble guanylyl cyclase by immunoaffinity chromatography, using synthetic peptides for the elution of the enzyme, appears to be superior to previously described methods. As antibodies against synthetic peptides corresponding to deduced amino acid sequences of the respective protein are easily obtained, the described method may be suitable for a convenient large-scale purification of various proteins.  相似文献   

13.
The pyrophosphate (PP(i)) analog foscarnet inhibits viral DNA-polymerases and is used to treat cytomegalovirus and human immunodeficiency vius infections. Nucleotide cyclases and DNA-polymerases catalyze analogous reactions, i.e. a phosphodiester bond formation, and have similar topologies in their active sites. Inhibition by foscarnet of adenylyl cyclase isoforms was therefore tested with (i) purified catalytic domains C1 and C2 of types I and VII (IC1 and VIIC1) and of type II (IIC2) and (ii) membrane-bound holoenzymes (from mammalian tissues and types I, II, and V heterologously expressed in Sf9 cell membranes). Foscarnet was more potent than PP(i) in suppressing forskolin-stimulated catalysis by both, IC1/IIC2 and VIIC1/IIC2. Stimulation of VIIC1/IIC2 by Galpha(s) relieved the inhibition by foscarnet but not that by PP(i). The IC(50) of foscarnet on membrane-bound adenylyl cyclases also depended on their mode of regulation. These findings predict that receptor-dependent cAMP formation is sensitive to inhibition by foscarnet in some, but not all, cells. This was verified with two cell lines; foscarnet blocked cAMP accumulation after A(2A)-adenosine receptor stimulation in PC12 but not in HEK-A(2A) cells. Foscarnet also inhibited soluble and, to a lesser extent, particulate guanylyl cylase. Thus, foscarnet interferes with the generation of cyclic nucleotides, an effect which may give rise to clinical side effects. The extent of inhibition varies with the enzyme isoform and with the regulatory input.  相似文献   

14.
Binding of bacteria to beta 1 chain integrin receptors results in either bacterial adherence or uptake by cultured cells (Isberg, 1991). In this report we show that Staphylococcus aureus coated with high affinity ligands for the beta 1 chain integrin family can be internalized efficiently, whereas bacteria coated with low affinity ligands are poorly internalized. Overproduction of the alpha 5 beta 1 integrin increased the efficiency of bacterial internalization, indicating that the uptake efficiency is directly related to the level of expression of the receptor. By using latex beads or S. aureus coated with mAbs directed against the alpha 5 beta 1 integrin, a roughly semi-logarithmic correlation was observed between the affinity of the receptor-ligand interaction and the rate of bacterial internalization. Evidence is presented that high affinity binding of the bacterium allows the microorganism to compete efficiently with receptor-ligand interactions at the basolateral surface of the cell.  相似文献   

15.
The membrane-bound guanylyl cyclase in rod photoreceptors is activated by guanylyl cyclase-activating protein 1 (GCAP-1) at low free [Ca2+]. GCAP-1 is a Ca2+-binding protein and belongs to the superfamily of EF-hand proteins. We created an oligopeptide library of overlapping peptides that encompass the entire amino acid sequence of GCAP-1. Peptides were used in competitive screening assays to identify interaction regions in GCAP-1 that directly bind the guanylyl cyclase in bovine photoreceptor cells. We found four regions in GCAP-1 that participate in regulating guanylyl cyclase. A 15-amino acid peptide located adjacent to the second EF-hand motif (Phe73-Lys87) was identified as the main interaction domain. Inhibition of GCAP-1-stimulated guanylyl cyclase activity by the peptide Phe73-Lys87 was completely relieved when an excess amount of GCAP-1 was added. An affinity column made from this peptide was able to bind a complex of photoreceptor guanylyl cyclase and tubulin. Using an anti-GCAP-1 antibody, we coimmunoprecipitated GCAP-1 with guanylyl cyclase and tubulin. Complex formation between GCAP-1 and guanylyl cyclase was observed independent of [Ca2+]. Our experiments suggest that there exists a tight association of guanylyl cyclase and tubulin in rod outer segments.  相似文献   

16.
Summary Concanavalin-A-colloidal gold (Con-A-G) complex and adenylate cyclase activity were detected simultaneously in electron microscopic preparations of human fibroblast cultures, by a combined histochemical technique. The colloidal gold particles appeared as round bodies which could be readily differentiated from the amorphous product of the adenylate cyclase enzyme reaction. The combined technique makes possible the simultaneous visualization of the bound ligand (i.e. of its binding site), and of the enzyme activated by the lignad. Treatment of the cells with Con-A accounted for a considerable increase in intracellular adenylate cyclase activity. The activity increase was disproportionally greater than the amount of bound ligand, and it also appeared in localizations showing no indication of ligand binding. Treatment of the fibroblasts with Con-A was followed by internalization of the lignand and the enzyme inside at least seemingly segregated vesicles.  相似文献   

17.
Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.  相似文献   

18.
19.
20.
A novel gene encoding an adenylyl cyclase, designated cyaG, was identified in the filamentous cyanobacterium Spirulina platensis. The predicted amino acid sequence of the C-terminal region of cyaG was similar to the catalytic domains of Class III adenylyl and guanylyl cyclases. The N-terminal region next to the catalytic domain of CyaG was similar to the dimerization domain, which is highly conserved among guanylyl cyclases. As a whole, CyaG is more closely related to guanylyl cyclases than to adenylyl cyclases in its primary structure. The catalytic domain of CyaG was expressed in Escherichia coli and partially purified. CyaG showed adenylyl cyclase (but not guanylyl cyclase) activity. By site-directed mutagenesis of three amino acid residues (Lys(533), Ile(603), and Asp(605)) within the purine ring recognition site of CyaG to Glu, Arg, and Cys, respectively, CyaG was transformed to a guanylyl cyclase that produced cGMP instead of cAMP. Thus having properties of both cyclases, CyaG may therefore represent a critical position in the evolution of Class III adenylyl and guanylyl cyclases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号