首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5′-nucleotidase, and alkaline phosphatase) in the postmortem putamen of SZ patients (n = 13) compared with aged-matched controls (n = 10). We firstly demonstrated, by means of artificial postmortem delay experiments, that ecto-nucleotidase activity in human brains was stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations. Remarkably, NTPDase-attributable activity (both ATPase and ADPase) was found to be reduced in SZ patients, while ecto-5′-nucleotidase and alkaline phosphatase activity remained unchanged. In the present study, we also describe the localization of these ecto-enzymes in human putamen control samples, showing differential expression in blood vessels, neurons, and glial cells. In conclusion, reduced striatal NTPDase activity may contribute to the pathophysiology of SZ, and it represents a potential mechanism of adenosine signalling impairment in this illness.  相似文献   

2.
Ecto-nucleoside triphosphate diphosphohydrolases, NTPDase1 (CD39) and NTPDase3, are integral plasma membrane proteins that hydrolyze extracellular nucleotides, thereby modulating the function of purinergic receptors. During processing in the secretory pathway, the active sites of ecto-nucleotidases are located in the lumen of vesicular compartments, thus raising the question whether the ecto-nucleotidases affect the ATP-dependent processes in these compartments, including protein folding in the endoplasmic reticulum (ER). It has been reported (J. Biol. Chem. (2001) 276, 41518-41525) that CD39 is not active until it reaches the plasma membrane, suggesting that terminal glycosylation in Golgi is critical for its activity. To investigate the subcellular location and the mechanism of ecto-nucleotidase activation, we expressed human NTPDase3 in COS-1 cells and blocked the secretory transport with monensin or brefeldin A, or by targeting to ER with a signal peptide. Cell surface biotinylation, sensitivity to glycosidases, and fluorescence microscopy analyses suggest that, in contrast to the previous report on CD39, NTPDase3 becomes catalytically active in the ER or in the ER-Golgi intermediate compartment, and that terminal glycosylation in Golgi is not essential for activity. Moreover, ER-targeted NTPDase3, but not wild-type NTPDase3 or ER-targeted inactive G221A mutant, significantly diminished the folding efficiency and the transport to the plasma membrane of coexpressed CD39 used as a reporter protein. These data suggest that ER-targeted NTPDase3 significantly depletes ATP in ER, whereas wild-type NTPDase3 is likely to acquire ATPase activity in a post-ER, but pre-Golgi, compartment, thus avoiding unproductive ATP hydrolysis and interference with protein folding in the ER. ER-targeted NTPDase3 may be a useful experimental tool to study the effects of ER ATP depletion on ER function under normal and stress conditions.  相似文献   

3.
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a physiologically important class of membrane-bound ectonucleotidases responsible for the regulation of extracellular levels of nucleotides. CD39 or NTPDase1 is the dominant NTPDase of the vasculature. By hydrolyzing proinflammatory ATP and platelet-activating ADP to AMP, it blocks platelet aggregation and supports blood flow. Thus, great interest exists in understanding the structure and dynamics of this prototype member of the eukaryotic NTPDase family. Here, we report the crystal structure of a variant of soluble NTPDase1 lacking a putative membrane interaction loop identified between the two lobes of the catalytic domain. ATPase and ADPase activities of this variant are determined via a newly established kinetic isothermal titration calorimetry assay and compared to that of the soluble NTPDase1 variant characterized previously. Complex structures with decavanadate and heptamolybdate show that both polyoxometallates bind electrostatically to a loop that is involved in binding of the nucleobase. In addition, a comparison of the domain orientations of the four independent proteins in the crystal asymmetric unit provides the first direct experimental evidence for a domain motion of NTPDases. An interdomain rotation angle of up to 7.4° affects the active site cleft between the two lobes of the protein. Comparison with a previously solved bacterial NTPDase structure indicates that the domains may undergo relative rotational movements of more than 20°. Our data support the idea that the influence of transmembrane helix dynamics on activity is achieved by coupling to a domain motion.  相似文献   

4.
The ectonucleoside triphosphate diphosphohydrolases (NTPDases) control extracellular nucleotide concentrations, thereby modulating many important biological responses, including blood clotting and pain perception. NTPDases1-4 are oligomeric integral membrane proteins, whereas NTPDase5 (CD39L4) and NTPDase6 (CD39L2) are soluble monomeric enzymes, making them more amenable to thorough structural and functional analyses than the membrane-bound forms. Therefore, we report here the bacterial expression, refolding, purification, and biochemical characterization of the soluble portion of human NTPDase6. Consistent with the enzyme expressed in mammalian cells, this recombinant NTPDase6 efficiently hydrolyzes GDP, IDP, and UDP (specific activity of approximately 50000 micromol mg(-1) h(-1)), with slower hydrolysis of CDP, ITP, GTP, CTP, ADP, and UTP and virtually no hydrolysis of ATP. The K(m) for GDP (130 +/- 30 microM) is similar to that determined for the soluble rat NTPDase6 expressed in mammalian cells. The secondary structure of the refolded enzyme was determined by circular dichroism to be 33% alpha-helix, 18% beta-sheet, and 49% random coil, consistent with the secondary structure predicted from the amino acid sequence of soluble NTPDase6. Four of the five cysteine residues in the soluble NTPDase6 are highly conserved among all the NTPDases, while the fifth residue is not. Mutation of this nonconserved cysteine resulted in an enzyme very similar to wild type in its enzymology and secondary structure, indicating that this cysteine exists as a free sulfhydryl and is not essential for structure or function. The disulfide pairing of the other four cysteine residues was determined as Cys(249)-Cys(280) and Cys(340)-Cys(354) by HPLC and mass spectral analysis of tryptic peptides. Due to conservation of these cysteine residues, these two disulfide bonds are likely to exist in all NTPDases. A structural model for NTPDase6, incorporating these and other findings obtained with other NTPDases, is proposed.  相似文献   

5.
Ectonucleotidases modulate purinergic signaling by hydrolyzing ATP to adenosine. Here we characterized the impact of the cellular distribution of hepatic ectonucleotidases, namely nucleoside triphosphate diphosphohydrolase (NTPDase)1/CD39, NTPDase2/CD39L1, NTPDase8, and ecto-5'-nucleotidase/CD73, and of their specific biochemical properties, on the levels of P1 and P2 receptor agonists, with an emphasis on adenosine-producing CD73. Immunostaining and enzyme histochemistry showed that the distribution of CD73 (protein and AMPase activity) overlaps partially with those of NTPDase1, -2, and -8 (protein levels and ATPase and ADPase activities) in normal rat liver. CD73 is expressed in fibroblastic cells located underneath vascular endothelial cells and smooth muscle cells, which both express NTPDase1, in portal spaces in a distinct fibroblast population next to NTPDase2-positive portal fibroblasts, and in bile canaliculi, together with NTPDase8. In fibrotic rat livers, CD73 protein expression and activity are redistributed but still overlap with the NTPDases mentioned. The ability of the observed combinations of ectonucleotidases to generate adenosine over time was evaluated by reverse-phase HPLC with the recombinant rat enzymes at high "inflammatory" (500 μM) and low "physiological" (1 μM) ATP concentrations. Overall, ATP was rapidly converted to adenosine by the NTPDase1+CD73 combination, but not by the NTPDase2+CD73 combination. In the presence of NTPDase8 and CD73, ATP was sequentially dephosphorylated to the CD73 inhibitor ADP, and then to AMP, thus resulting in a delayed formation of adenosine. In conclusion, the specific cellular cocompartmentalization of CD73 with hepatic NTPDases is not redundant and may lead to the differential activation of P1 and P2 receptors, under normal and fibrotic conditions.  相似文献   

6.
Over the last seven years our laboratory has focused on the determination of the structural aspects of nucleoside triphosphate diphosphohydrolases (NTPDases) using site-directed mutagenesis and computational comparative protein modeling to generate hypotheses and models for the hydrolytic site and enzymatic mechanism of the family of NTPDase nucleotidases. This review summarizes these studies utilizing NTPDase3 (also known as CD39L3 and HB6), an NTPDase family member that is intermediate in its characteristics between the more widely distributed and studied NTPDase1 (also known as CD39) and NTPDase2 (also known as CD39L1 and ecto-ATPase) enzymes. Relevant site-directed mutagenesis studies of other NTPDases are also discussed and compared to NTPDase3 results. It is anticipated that many of the results and conclusions reached via studies of NTPDase3 will be relevant to understanding the structure and enzymatic mechanism of all the cell-surface members of this family (NTPDase1–3, 8), and that understanding these NTPDase enzymes will aid in modulating the many varied processes under purinergic signaling control. This review also integrates the site-directed mutagenesis results with a recent 3-D structural model for the extracellular portion of NTPDases that helps explain the importance of the apyrase conserved regions (ACRs) of the NTPDases. Utilizing this model and published work from Dr Guidotti's laboratory concerning the importance and characteristics of the two transmembrane helices and their movements in response to substrate, we present a speculative cartoon model of the enzymatic mechanism of the membrane-bound NTPDases that integrates movements of the extracellular region required for catalysis with movements of the N- and C-terminal transmembrane helices that are important for control and modulation of enzyme activity.  相似文献   

7.
The GDA1/CD39 ecto-nucleoside triphosphate diphosphosphohydrolase (E-NTPDase) superfamily is a group of eight heavily glycosylated ecto-enzymes that hydrolyze extracellular nucleosides di- and tri-phosphates in the presence of divalent cations, to generate the monophosphate derivatives. This catalytic process differentially regulates a complex array of purinergic signaling responses. NTPDase3/CD39L3is dominantly expressed in pancreatic islet cells, where it may regulate insulin secretion, and has seven N-linked glycosylation sites with four close to five highly conserved domains called “apyrase conserved regions” (ACRs). In a manner similar to CD39, NTPDase3/CD39L3 uses ATP as its preferential substrate and also possesses significant activities toward other triphosphate and diphosphate nucleosides. To understand the mechanism of the ecto-NTPDase activity and substrate specificity, potentially impacted by N-glycans, we have generated soluble enzymatic domains of NTPDase3/CD39L3 in human embryotic kidney cells with four different glycan modifications. These include mannose5–9 glycans with kifunesine treatment, single GlcNAc-Asn by treatment with EndoH, de-glycosylated form by treatment with PNGaseF, and wild-type glycans. Our functional data indicate that the non-glycosylated NTPDase3/CD39L3 ecto-enzymatic domain retains activity, but that N-glycan attachments, such as the GlcNAc-Asn, substantially upregulate specific NTPDase activity by 2–20 fold. Both the Vmax and the Km on di- or tri-phosphate nucleosides are substantially and differentially altered by the glycan attachments. Structural modeling analysis based on putative structures derived from bacterial-originated CD39 domain proteins suggests that N-glycan modifications at Asn149 next to ACR2 and/or Asn454, N-terminal to ACR5 have critical roles in regulating the catalytic pocket of NTPDase3/CD39L3. Our data provide both new insights into the enzymatic mechanisms of NTPDase family members and further evidence that N-glycans directly modulate functional ectonucleotidase activities.  相似文献   

8.
Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) is the dominant ecto-nucleotidase of vascular and placental trophoblastic tissues and appears to modulate the functional expression of type-2 purinergic (P2) G-protein coupled receptors (GPCRs). Hence, this ectoenzyme could regulate nucleotide-mediated signalling events in placental tissue. This immunohistochemical and immuno-electron microscopic study demonstrates the expression of NTPDase1/CD39, P2Y1 and P2Y2 receptors in different cell types of human placenta. Specifically P2Y1 has an exclusive vascular distribution whereas P2Y2 is localized on trophoblastic villi. Co-localization of P2Y1 and NTPDase1/CD39 are observed in caveolae, membrane microdomains of endothelial cells. The differential localization of these P2 receptors might indicate their unique roles in the regulation of extracellular nucleotide concentrations in human placental tissues and consequent effects on vascular tone and blood fluidity.  相似文献   

9.
The physiological action of extracellular ATP and other nucleotides in the nervous system is controlled by surface-located enzymes (ecto-nucleotidases) of which several families with partially overlapping substrate specificities exist. In order to identify ecto-nucleotidases potentially associated with neural cells, we chose PC12 cells for analysis. PC12 cells revealed surface-located ATPase and ADPase activity with apparent K(m)-values of 283 microM and 243 microM, respectively. Using PCR we identified the mRNA of all members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated (NTPDase1 to NTPDase3, NTPDase5/6), of ecto-nucleotide pyrophosphatase/phosphodiesterase3 (NPP3), tissue-non-specific alkaline phosphatase and ecto-5'-nucleotidase. The surface-located catalytic activity differed greatly between the various enzyme species. Our data suggest that hydrolysis of ATP and ADP is mainly due to members of the ecto-nucleoside triphosphate diphosphohydrolase family. Activity of ecto-5'-nucleotidase and alkaline phosphatase was very low and activity of NPP3 was absent. For a detailed analysis of the cellular distribution of ecto-nucleotidases single and double transfections of PC12 cells were performed, followed by fluorescence analysis. Ecto-nucleotidases were distributed over the entire cell surface and accumulated intracellularly in varicosities and neurite tips. PC12 cell ecto-nucleotidases are likely to play an important role in terminating autocrine functions of released nucleotides and in producing extracellular nucleosides supporting the survival and neuritic differentiation of PC12 cells.  相似文献   

10.
N-linked glycosylation is important for the function, cellular localization, and oligomerization of membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases). NTPDase3 is a prototypical cell membrane-associated eNTPDase, which is equally related and enzymatically intermediate to the other two cell surface membrane NTPDases (NTPDase1 and 2). The protein sequence of NTPDase3 contains seven putative N-glycosylation sites located in the ecto-domain. Only one of these putative glycosylation sites, asparagine 81 in NTPDase3, which is located near apyrase conserved region 1 (ACR1), is invariant in all the cell surface membrane eNTPDases. Using site-directed mutagenesis, mutants were constructed to eliminate this highly conserved N-glycosylation site in NTPDase3. The results indicate that glycosylation at this position is essential for full enzymatic activity, with mutant ATPase activity decreased more than ADPase activity. Enzymatic deglycosylation of this site is shown to be responsible for the inactivation of the wild-type enzyme by treatment with peptide N-glycosidase-F. In addition, glycosylation of this conserved site is necessary for the stabilization/stimulation of nucleotidase activity upon treatment with the lectin concanavalin A. However, lack of glycosylation at this site did not result in large changes in tertiary or quaternary structure, as measured by Cibacron blue binding, chemical cross-linking, and native gel electrophoretic analysis. Since this N-glycosylation site is invariant in cell membrane eNTPDases, it is postulated that glycosylation of this residue near ACR1 is crucial for full enzymatic activity of the cell membrane NTPDases.  相似文献   

11.
Cell membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are homooligomeric, with native quaternary structure required for maximal enzyme activity. In this study, we mutated lysine 79 in human ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). The residue corresponding to lysine 79 in NTPDase3 is conserved in all known cell surface membrane NTPDases (NTPDase1, 2, 3, and 8), but not in the soluble, monomeric NTPDases (NTPDase5 and 6), or in the intracellular, two transmembrane NTPDases (NTPDase4 and 7). This conserved lysine is located between apyrase conserved region 1 (ACR1) and an invariant glycosylation site (N81), in a region previously hypothesized to be important for NTPDase3 oligomeric structure. This lysine residue was mutated to several different amino acids, and all mutants displayed substantially decreased nucleotidase activities. A basic amino acid at this position was found to be important for the increase of nucleotidase activity observed after treatment with the lectin, concanavalin A. After solubilization with Triton X-100, mutants showed little or no decrease in activity, unlike the wild-type enzyme, suggesting that the lysine at this position may be important for maintaining proper folding and for stabilizing the quaternary structure. However, mutation at this site did not result in global changes in tertiary or quaternary structure as measured by Cibacron blue binding, chemical cross linking, and native gel electrophoretic analysis, leaving open the possibility of other mechanisms by which mutation of this conserved lysine residue might decrease enzyme activity.  相似文献   

12.
Ecto-ATPase (CD39L1) corresponds to the type 2 enzyme of the ecto-nucleoside triphosphate diphosphohydrolase family (E-NTPDase). We have isolated from human ECV304 cells three cDNAs with high homology with members of the E-NTPDase family that encode predicted proteins of 495, 472, and 450 amino acids. Sequencing of a genomic DNA clone confirmed that these three sequences correspond to splice variants of the human ecto-ATPase (NTPDase2 alpha,-2 beta, and -2 gamma). Although all three enzyme forms were expressed heterologously to similar levels in Chinese hamster ovary cells clone K-1 (CHO-K1) cells, only the 495-amino acid protein (NTPDase2 alpha exhibited ecto-ATPase activity. Immunolocalization studies demonstrated that NTPDase2 alpha is fully processed and trafficked to the plasma membrane, whereas the NTPDase2 beta and -2 gamma splice variants were retained in not fully glycosylated forms in the endoplasmic reticulum. The potential roles of two highly conserved residues, Cys399 and Asn443, in the activity and cellular trafficking of the ecto-ATPase were examined. Mutation of Cys399, which is absent in NTPDase2 beta and -2 gamma, produced a protein completely devoid of nucleotidase activity, while mutation of Asn443 to Asp resulted in substantial loss of activity. Neither the Cys399 nor Asn443 mutants were fully glycosylated, and both were retained in the endoplasmic reticulum. These results indicate that the lack of ecto-nucleotidase activity exhibited by NTPDase2 beta and -2 gamma and the C399S mutant, as well as the large reduction of activity in the N443D mutant are due to alterations in the folding/maturation of these proteins.  相似文献   

13.
Human CD39/NTPDase1 is an endothelial cell membrane-associated nucleotidase. Its large extracellular domain rapidly metabolizes nucleotides, especially ADP released from activated platelets, inhibiting further platelet activation/recruitment. Previous studies using our recombinant soluble CD39 demonstrated the importance of residues S57, D54, and D213 for enzymatic/biological activity. We now report effects of S57A, D54A, and D213A mutations on full-length (FL)CD39 function. Enzymatic activity of alanine modified FLCD39s was less than wild-type, contrasting the enhanced activity of their soluble counterparts. Furthermore, conservative substitutions D54E and D213E led to enzymes with activities greater than the alanine modified FLCD39s, but less than wild-type. Reductions in mutant activities were primarily associated with reduced catalytic rates. Differences in enzymatic activity were not attributable to gross changes in the nucleotide binding pocket or the enzyme's ability to multimerize. Thus, composition of the active site of wild-type CD39 appears optimized for ADPase function in the context of the transmembrane domains.  相似文献   

14.
15.
Human immunodeficiency virus type 1 (HIV-1) carries a variety of host proteins in addition to virus-encoded structural proteins, both in its envelope and inside the viral particle. Previous studies have reported that the HIV-1 life-cycle is affected by such virus-associated host cell surface proteins. The nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), also known as CD39, is a plasma membrane-bound ectoenzyme that hydrolyzes extracellular ATP and ADP to AMP. It has been shown that CD39 inhibits platelet function, and is thus a critical thromboregulatory molecule. We demonstrate here that host-derived CD39 is acquired by both laboratory-adapted and clinical variants of HIV-1 produced in cellular reservoirs of the virus. Moreover, purified CD39-bearing virions, but not isogenic viruses lacking CD39, display strong ATPase and ADPase activities. It is of particular interest that virions bearing this cellular enzyme can inhibit ADP-induced platelet aggregation, an effect blocked by an NTPDase inhibitor. On the basis of published and the present data on the functionality of human cellular proteins embedded within HIV-1, it can be proposed that these proteins might contribute to some of the immunologic deficiencies seen in infected individuals.  相似文献   

16.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

17.
As part of its pathogenesis, Legionella pneumophila persists within human alveolar macrophages in non-acidified organelles that do not mature into phagolysosomes. Two L. pneumophila genes, lpg0971 and lpg1905, are predicted to encode ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) that share sequence similarity with human CD39/NTPDase1. The predicted products possess five apyrase conserved domains that are typical of eukaryotic ecto-NTPDases. In this study, we found that an lpg1905 mutant was recovered in lower numbers from macrophages, alveolar epithelial cells and the amoeba, Hartmannella vermiformis compared with wild-type L. pneumophila and an lpg0971 mutant. Similar to human CD39, recombinant purified Lpg1905 exhibited ATPase and ADPase activity and possessed the ability to inhibit platelet aggregation. Mutation of a conserved Glu159 residue that is essential for CD39 activity inhibited ATPase and ADPase activity of Lpg1905. In addition, enzyme activity was inhibited in the presence of the specific ecto-NTPDase inhibitor, ARL67156. The entry and replication defect of the lpg1905 mutant was reversed upon transcomplementation with lpg1905 but not lpg1905E159A encoding an enzymatically inactive form of the protein. Although several protozoan parasites exhibit ecto-NTPDase activity, including Toxoplasma gondii, Trichomonas vaginalis and Trypanosoma cruzi, this is the first time a bacterial ecto-NTPDase has been implicated in virulence.  相似文献   

18.
CD39/ecto-NTPDase 1 (nucleoside triphosphate diphosphohydrolase 1) is an ecto-nucleotidase that influences P2 receptor activation to regulate vascular and immune cell adhesion and signalling events pivotal in inflammation. Whether CD39 interacts with other membrane or cytoplasmic proteins has not been established to date. Using the yeast two-hybrid system, we note that the N-terminus of CD39 binds to RanBPM (Ran binding protein M; also known as RanBP9), a multi-adaptor scaffolding membrane protein originally characterized as a binding protein for the small GTPase Ran. We confirm formation of complexes between CD39 and RanBPM in transfected mammalian cells by co-immunoprecipitation studies. Endogenous CD39 and RanBPM are also found to be co-expressed and abundant in cell membranes of B-lymphocytes. NTPDase activity of recombinant CD39, but not of N-terminus-deleted-CD39 mutant, is substantially diminished by RanBPM co-expression in COS-7 cells. The conserved SPRY [repeats in splA and RyR (ryanodine receptor)] moiety of RanBPM is insufficient alone for complete physical and functional interactions with CD39. We conclude that CD39 associations with RanBPM have the potential to regulate NTPDase catalytic activity. This intermolecular interaction may have important implications for the regulation of extracellular nucleotide-mediated signalling.  相似文献   

19.
The first comprehensive review of the ubiquitous “ecto-ATPases” by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.  相似文献   

20.
Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1β, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host’s inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11302-021-09819-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号