首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(4):928-942
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies.

In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI).

Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities.

Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding.  相似文献   

2.
A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics.  相似文献   

3.
《MABS-AUSTIN》2013,5(5):912-921
Immunoglobulin G (IgG) has an unusually long serum half-life in comparison to proteins of a similar size. It is well-known that this phenomenon is due to IgG's ability to bind the neonatal Fc receptor (FcRn) in a pH-dependent manner. FcRn binding properties can vary among IgGs, resulting in altered in vivo half-lives, and therefore it would be beneficial to accurately predict the FcRn binding properties of therapeutic IgG monoclonal antibodies (mAbs). Here we describe the development of an in vitro model capable of predicting the in vivo half-life of human IgG. Using a high-throughput biolayer interferometry (BLI) platform, the human FcRn association rate at acidic pH and subsequent dissociation rate at physiological pH was determined for 5 human IgG1 mAbs. Comparing the combined FcRn association and dissociation rates to the Phase 1 clinical study half-lives of the mAbs resulted in a strong correlation. The correlation was also verified in vivo using mice transgenic for human FcRn. The model was used to characterize various factors that may influence FcRn-mAb binding, including mAb variable region sequence differences and constant region glycosylation patterns. Results indicated that the complementarity-determining regions of the heavy chain significantly influence the mAb's FcRn binding properties, while the absence of glycosylation does not alter mAb-FcRn binding. Development of this high-throughput FcRn binding model could potentially predict the half-life of therapeutic IgGs and aid in selection of lead candidates while also serving as a screening tool for the development of mAbs with desired pharmacokinetic properties.  相似文献   

4.
《MABS-AUSTIN》2013,5(7):1276-1288
ABSTRACT

The neonatal Fc receptor (FcRn) promotes antibody recycling through rescue from normal lysosomal degradation. The binding interaction is pH-dependent with high affinity at low pH, but not under physiological pH conditions. Here, we combined rational design and saturation mutagenesis to generate novel antibody variants with prolonged half-life and acceptable development profiles. First, a panel of saturation point mutations was created at 11 key FcRn-interacting sites on the Fc region of an antibody. Multiple variants with slower FcRn dissociation kinetics than the wildtype (WT) antibody at pH 6.0 were successfully identified. The mutations were further combined and characterized for pH-dependent FcRn binding properties, thermal stability and the FcγRIIIa and rheumatoid factor binding. The most promising variants, YD (M252Y/T256D), DQ (T256D/T307Q) and DW (T256D/T307W), exhibited significantly improved binding to FcRn at pH 6.0 and retained similar binding properties as WT at pH 7.4. The pharmacokinetics in human FcRn transgenic mice and cynomolgus monkeys demonstrated that these properties translated to significantly prolonged plasma elimination half-life compared to the WT control. The novel variants exhibited thermal stability and binding to FcγRIIIa in the range comparable to clinically validated YTE and LS variants, and showed no enhanced binding to rheumatoid factor compared to the WT control. These engineered Fc mutants are promising new variants that are widely applicable to therapeutic antibodies, to extend their circulation half-life with obvious benefits of increased efficacy, and reduced dose and administration frequency.  相似文献   

5.
Therapeutic monoclonal antibodies are among the most effective biotherapeutics to date. An important aspect of antibodies is their ability to bind antigen while at the same time recruit immune effector functions. The majority of approved recombinant monoclonal antibody therapies are of the human IgG1 subclass, which can engage both humoral and cellular components of the immune system. The wealth of information generated about antibodies has afforded investigators the ability to molecularly engineer antibodies to modulate effector functions. Here, we review various antibody engineering efforts intended to improve efficacy and safety relative to the human IgG isotype. Further, we will discuss proposed mechanisms by which engineering approaches led to modified interactions with immune components and provide examples of clinical studies using next generation antibodies.  相似文献   

6.
Binding interactions with the neonatal Fc receptor (FcRn) are one determinant of pharmacokinetic properties of recombinant human monoclonal antibody (rhumAb) therapeutics, and a conserved binding motif in the crystallizable fragment (Fc) region of IgG molecules interacts with FcRn. Surface plasmon resonance (SPR) biosensor assays are often used to characterize interactions between FcRn and rhumAb therapeutics. In such assays, generally either the rhumAb (format 1) or the FcRn protein (format 2) is immobilized on a biosensor chip. However, because evidence suggests that, in some cases, the variable domains of a rhumAb may also affect FcRn binding, we evaluated the effect of SPR assay configuration on binding data. We sought to assess FcRn binding properties of 2 rhumAbs (rhumAb1 and rhumAb2) to FcRn proteins using these 2 biosensor assay formats. The two rhumAbs have greater than 99% sequence identity in the Fc domain but differ in their Fab regions. rhumAb2 contains a positively charged patch in the variable domain that is absent in rhumAb1. Our results showed that binding of rhumAb1 to FcRn was independent of biosensor assay configuration, while binding of rhumAb2 to FcRn was highly SPR assay configuration dependent. Further investigations revealed that the format dependency of rhumAb2-FcRn binding is linked to the basic residues that form a positively charged patch in the variable domain of rhumAb2. Our work highlights the importance of analyzing rhumAb-FcRn binding interactions using 2 alternate SPR biosensor assay configurations. This approach may also provide a simple way to identify the potential for non-Fc-driven FcRn binding interactions in otherwise typical IgGs.  相似文献   

7.
The MHC class I-related receptor, FcRn, is involved in binding and transporting immunoglobulin G (IgG) within and across cells. In contrast to mouse FcRn, which binds to IgGs from multiple different species, human FcRn is surprisingly stringent in binding specificity. For example, human FcRn does not bind to mouse IgG1 or IgG2a and interacts only weakly with mouse IgG2b. Here, we have used site-directed mutagenesis in combination with interaction (surface plasmon resonance) studies, with the goal of generating human FcRn variants that more closely resemble mouse FcRn in binding specificity. Our studies show that residues encompassing and extending away from the interaction site on the alpha2 helix of FcRn play a significant and most likely indirect role in FcRn-IgG interactions. Further, by combining mutations in the alpha2 helix with those in a non-conserved region of the alpha1 helix encompassing residues 79-89, we have generated a human FcRn variant that has properties very similar to those of mouse FcRn. These studies define the molecular basis for the marked difference in binding specificity between human and rodent FcRn, and give insight into how human FcRn recognizes IgGs.  相似文献   

8.
The IgG binding Fcgamma receptors (FcgammaRs) play a key role in defence against pathogens by linking humoral and cell-mediated immune responses. Impaired expression and/or function of FcgammaR may result in the development of pathological autoimmunity. Considering the functions of FcgammaRs, they are potential target molecules for drug design to aim at developing novel anti-inflammatory and immunomodulatory therapies. Previous data mostly obtained by X-ray analysis of ligand-receptor complexes indicate the profound role of the CH2 domain in binding to various FcgammaRs. Our aim was to localize linear segments, which are able to bind and also to modulate the function of the low affinity FcgammaRs, like FcgammaRIIb and FcgammaRIIIa. To this end a set of overlapping octapeptides was prepared corresponding to the 231-298 sequence of IgG1 CH2 domain and tested for binding to human recombinant soluble FcgammaRIIb. Based on these results, a second group of peptides was synthesized and their binding properties to recombinant soluble FcgammaRIIb, as well as to FcgammaRs expressed on the cell surface, was investigated. Here we report that peptide representing the Arg(255)-Ser(267) sequence of IgG1 is implicated in the binding to FcgammaRIIb. In addition we found that peptides corresponding to the Arg(255)-Ser(267), Lys(288)-Ser(298) or Pro(230)-Val(240) when presented in a multimeric form conjugated to branched chain polypeptide in uniformly oriented copies induced the release of TNFalpha, a pro-inflammatory cytokine from MonoMac monocyte cell line. These findings indicate that these conjugated peptides are able to cluster the activating FcgammaRs, and mediate FcgammaR dependent function. Peptide Arg(255)-Ser(267) can also be considered as a lead for further functional studies.  相似文献   

9.
IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic.  相似文献   

10.
Because the variable ability of the antibody constant (Fc) domain to recruit innate immune effector cells and complement is a major factor in antibody activity in vivo, convenient means of assessing these binding interactions is of high relevance to the development of enhanced antibody therapeutics, and to understanding the protective or pathogenic antibody response to infection, vaccination, and self. Here, we describe a highly parallel microsphere assay to rapidly assess the ability of antibodies to bind to a suite of antibody receptors. Fc and glycan binding proteins such as FcγR and lectins were conjugated to coded microspheres and the ability of antibodies to interact with these receptors was quantified. We demonstrate qualitative and quantitative assessment of binding preferences and affinities across IgG subclasses, Fc domain point mutants, and antibodies with variant glycosylation. This method can serve as a rapid proxy for biophysical methods that require substantial sample quantities, high-end instrumentation, and serial analysis across multiple binding interactions, thereby offering a useful means to characterize monoclonal antibodies, clinical antibody samples, and antibody mimics, or alternatively, to investigate the binding preferences of candidate Fc receptors.  相似文献   

11.
《MABS-AUSTIN》2013,5(2):331-343
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.  相似文献   

12.
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG''s variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG''s serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.  相似文献   

13.
Human IgG is the main antibody class used in antibody therapies because of its efficacy and longer half-life, which are completely or partly due to FcγR-mediated functions of the molecules. Preclinical testing in mouse models are frequently performed using human IgG, but no detailed information on binding of human IgG to mouse FcγRs is available. The orthologous mouse and human FcγRs share roughly 60–70% identity, suggesting some incompatibility. Here, we report binding affinities of all mouse and human IgG subclasses to mouse FcγR. Human IgGs bound to mouse FcγR with remarkably similar binding strengths as we know from binding to human ortholog receptors, with relative affinities IgG3>IgG1>IgG4>IgG2 and FcγRI>>FcγRIV>FcγRIII>FcγRIIb. This suggests human IgG subclasses to have similar relative FcγR-mediated biological activities in mice.  相似文献   

14.
15.
16.
Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier   总被引:1,自引:0,他引:1  
The blood-brain barrier (BBB) restricts transport of immunoglobulin G (IgG) in the blood to brain direction. However, IgG undergoes rapid efflux in the brain to blood direction via reverse transcytosis across the BBB after direct intracerebral injection. This BBB IgG transport system has the characteristics of an Fc receptor (FcR), but there is no molecular information on the putative BBB FcR. The present study uses confocal microscopy and an antibody to the rat neonatal FcR (FcRn), and demonstrates the expression of the FcRn at the brain microvasculature and choroid plexus epithelium. Co-localization with the Glut1 glucose transporter indicates the brain microvascular FcRn is expressed in the capillary endothelium. The capillary endothelial FcRn may mediate the 'reverse transcytosis' of IgG in the brain to blood direction.  相似文献   

17.
18.
《MABS-AUSTIN》2013,5(2):502-508
The neonatal Fc receptor (FcRn) plays a pivotal role in IgG homeostasis, i.e., it salvages IgG antibodies from lysosomal degradation following fluid-phase pinocytosis, thus preventing rapid systemic elimination of IgG. Recombinant therapeutic antibodies are typically composed of human or humanized sequences, and their biodistribution, or tissue distribution, is often studied in murine models, although, the effect of FcRn on tissue distribution of human IgG in rodents has not been investigated. In this report, an 125I-labeled human IgG1 antibody was studied in both wild type C57BL/6 (WT) and FcRn knockout (KO) mice. Total radioactivity in both plasma and tissues (0–96hr post-dose) was measured by gamma-counting. Plasma exposure of human IgG1 were significantly lower in FcRn KO mice, which is consistent with the primary function of FcRn. Differences in biodistribution of human IgG to selected tissues were also observed. Among the tissue examined, the fat, skin and muscle showed a decrease in tissue-to-blood (T/B) exposure ratio of human IgG1 in FcRn KO mice comparing to the WT mice, while the liver, spleen, kidney, and lung showed an increase in the T/B exposure ratio in FcRn KO mice. A time-dependent change in the T/B ratios of human IgG1 was also observed for many tissues in FcRn KO mice. These results suggest that, in addition to its role in IgG elimination, FcRn may also play a role in antibody biodistribution.  相似文献   

19.
The neonatal Fc receptor (FcRn) plays a pivotal role in IgG homeostasis, i.e., it salvages IgG antibodies from lysosomal degradation following fluid-phase pinocytosis, thus preventing rapid systemic elimination of IgG. Recombinant therapeutic antibodies are typically composed of human or humanized sequences, and their biodistribution, or tissue distribution, is often studied in murine models, although, the effect of FcRn on tissue distribution of human IgG in rodents has not been investigated. In this report, an 125I-labeled human IgG1 antibody was studied in both wild type C57BL/6 (WT) and FcRn knockout (KO) mice. Total radioactivity in both plasma and tissues (0–96hr post-dose) was measured by gamma-counting. Plasma exposure of human IgG1 were significantly lower in FcRn KO mice, which is consistent with the primary function of FcRn. Differences in biodistribution of human IgG to selected tissues were also observed. Among the tissue examined, the fat, skin and muscle showed a decrease in tissue-to-blood (T/B) exposure ratio of human IgG1 in FcRn KO mice comparing to the WT mice, while the liver, spleen, kidney, and lung showed an increase in the T/B exposure ratio in FcRn KO mice. A time-dependent change in the T/B ratios of human IgG1 was also observed for many tissues in FcRn KO mice. These results suggest that, in addition to its role in IgG elimination, FcRn may also play a role in antibody biodistribution.  相似文献   

20.
The gelatinases are a subgroup of the matrix metalloproteinase family. The interaction of their C-terminal hemopexin-like domain with a tissue inhibitor of metalloproteinases (TIMP) is a major part of the regulatory mechanisms of gelatinases. To investigate the interaction of the hemopexin-like domain of gelatinase B (92-Pex) and TIMP-1, we expressed the individual domain in Pichia pastoris. The active refolded domain was purified by ion exchange chromatography and gel filtration. We investigated the formation of the 92-Pex/TIMP-1 complex by surface plasmon resonance (SPR). The dissociation constant Kd was calculated to be 0.86 nM. Analogous to the complex of the hemopexin-like domain of gelatinase A and TIMP-2 (Olson, M. W. et al., 1997), the binding curves of the 92-Pex/TIMP-1 complex were best fitted with a monophasic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号