首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tracing dietary origins of the predatory beetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) aids understanding their roles in the food web and provides information to develop strategies for effective conservation in agroecosystems comprised of wheat [Triticum aestivum L. (Poaceae)], cotton [Hirsutum spp. (Malvaceae)], and maize [Zea mays L. (Poaceae)]. Intrinsic markers of carbon and nitrogen stable isotope ratios (δ13C and δ15N) in P. japonica need to be developed to ascertain the source(s) of diet. Experiments were carried out to examine the changes of δ13C and δ15N among the three crops, pests (wheat, cotton, and maize aphids; all Hemiptera: Aphididae), and P. japonica fed on aphids of each of the three crops. Results indicated that δ13C values in P. japonica fed on wheat, cotton, and maize aphids were ?27.2 to ?26.5‰, ?24.2 to ?23.9‰, and ?11.0 to ?10.7‰, respectively, whereas their δ15N values were 1.1 to 2.9‰, 6.0 to 7.4‰, and ?0.6 to 0.1‰, respectively. δ13C and δ15N plots clearly identify the three crops, the dietary origins of the aphids, and the host origins of the aphid prey consumed by the ladybird beetles, as each pathway displays a non‐overlapping pattern. Based on the values of δ13C and δ15N of the three food webs, dietary origins can be traced in the predatory beetle P. japonica derived from wheat, cotton, and maize crops.  相似文献   

2.
Biological control of economically important crop pests is an important component of integrated pest management (IPM) strategies. Predator–prey energy relationships are critical to the success of biocontrol strategies; however, these relationships are often ignored in many IPM programs. In this study, the biocontrol potential of cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), by the ladybeetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) was estimated in terms of energy budgets calculated at 27 ± 1 °C. The energy equivalent of prey subjects (aphids) consumed was estimated from bomb calorimetry and partitioned into the energy associated with ingestion, assimilation, respiration, reproduction, and waste for each developmental stage of the lady beetle. The average assimilation efficiencies for larval and adult ladybeetles were 88.2 and 91.1%, respectively, whereas net ecological efficiencies were 17.6% for larvae and 2.6% for adults. Similarly, assimilation efficiencies of cotton aphids were 71.5 and 74.4% for nymphs and adults, respectively. Based on energy budget calculations, approximately 520, 3‐day‐old aphids and 5 356, 3‐day‐old aphids were estimated to be consumed by the ladybeetle larval stage and the female adult stage, respectively. These estimates were similar to the actual number of aphids consumed by the ladybeetles, based on actual counts. The current data demonstrate that P. japonica is an important natural enemy of the cotton aphid, and that predator–prey energy relationships can play a critical role in biocontrol strategies and IPM programs.  相似文献   

3.
Transgenic Bacillus thuringiensis Berliner (Bt) crops receive particular attention because they carry genes encoding insecticidal proteins that might negatively affect non‐target arthropods. Here, laboratory experiments were conducted to evaluate the impact of Cry1Ab‐expressing transgenic maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] on the biological parameters of two non‐target arthropods, the aphid Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) and its predator the ladybeetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). In a long‐term assay (three generations), no significant differences were found between R. maidis fed Bt maize and those fed a near‐isogenic line (5422) when individual parameters were compared, including nymph development time, adult longevity, aphid spawning period, and fecundity. No negative effects were detected throughout the life cycle of Pjaponica in aphids’ feeding amount, development (nymphs, pupae, adults, and progeny eggs), fecundity, or egg hatching when they preyed on Bt maize‐fed aphids compared with non‐Bt maize treatments. A tritrophic assay revealed that Cry1Ab was highly diluted through the food chain (Bt maize leaves, R. maidis, and P. japonica), as detected by an enzyme‐linked immunosorbent assay (ELISA). In conclusion, although Cry1Ab concentrations in maize leaves increased as the plants developed, Cry1Ab levels were significantly reduced in the aphid R. maidis, and no traces of Cry1Ab were detected in P. japonica preying on Bt maize‐fed aphids. The two hybrids of Bt maize expressing Cry1Ab had no negative effects on the measured biological parameters of the aphid R. maidis or its predator, the ladybeetle P. japonica.  相似文献   

4.
Environmental heterogeneity can have profound effects on agroecosystem function and it is important for improving ecosystem services such as biological control. Promoting system diversity via non‐crop plants is one method for increasing habitat heterogeneity within farmscapes. Non‐crop plants provide access to refuges and alternative food resources provide multiple benefits to enhance populations of arthropod predators. In this study, we examined the effects of small‐scale spatial structure on life‐stage specific interactions between the native coccinellid, Hippodamia convergensGuérin‐Méneville, and the exotic Harmonia axyridis (Pallas) (both Coleoptera: Coccinellidae), which overlap in spatial distribution in many crop systems. Squash [Cucurbita pepo L. (Cucurbitaceae)] and non‐crop mugwort [Artemisia vulgaris L. (Asteraceae)] plants with and without aphids were used as a model of spatial heterogeneity in micro‐ and mesocosm experiments. In response to factorial treatment combinations, we evaluated oviposition behavior, egg predation, larval survival, and larval predator‐prey and predator‐predator interactions. Adult H. convergens displayed higher foraging activity on aphids when exposed to complex habitats containing a non‐crop plant. In the presence of the exotic coccinellid, H. convergens preferred to deposit eggs on the non‐crop plant. Furthermore, a combination of spatial heterogeneity and prey availability reduced larval intraguild predation and cannibalism, and improved reproductive output of H. convergens by reducing intra‐ and interspecific egg predation. Our results provide evidence that life‐stage‐specific intraguild interactions are mediated by access to non‐crop plants. Thus, the introduction or maintenance of non‐crop plants has the potential to enhance coexistence of multiple natural enemies and improve top‐down control of pests.  相似文献   

5.
Several models and experimental studies conducted in confined environments have shown that intraguild predation (IGP) can modulate population abundances and structure communities. A number of ecological and abiotic factors determine the nature and frequency of IGP. This study examined the effect of plant architecture and extraguild prey density, and their interactions, on the occurrence of IGP between two species of ladybird, Harmonia axyridis (Pallas) and Propylea quatuordecimpunctata L. (both Coleoptera: Coccinellidae). Theoretical concepts predict that IGP levels would increase with a decrease of both extraguild prey density and plant structural complexity. We conducted a factorial experiment in an open soybean field into which coccinellid larvae were introduced in experimental plots for a period of 5 days. We tested two levels of soybean aphid [Aphis glycines Matsumara (Hemiptera: Aphididae)] density, low and high (100 and 1 000 aphids per plot, respectively), and two levels of plant complexity, low (by removing half of the branches from the soybean plants) and high (by leaving plants intact). We used species‐specific molecular markers to detect the presence of P. quatuordecimpunctata in the digestive tract of H. axyridis. Molecular gut‐content analysis of H. axyridis revealed that rates of IGP were higher (20%) at low aphid density than at high aphid density (<6%). Decreased plant complexity did not impact the frequency of IGP. In accordance with existing literature, this study demonstrates that IGP is amplified at low extraguild prey density. We conclude that considering environmental factors, such as extraguild prey density, is crucial to improve our ability to predict the impact of intraguild predation on community structure and, from an applied perspective, biological control.  相似文献   

6.
Cannibalism (CANN) and intraguild predation (IGP) may provide energy and nutrients to individuals and eliminate potential competitors. These negative competitive interactions could also affect the coexistence of predatory species. The co‐occurrence of aphidophagous ladybird species in crops creates opportunities for CANN and IGP, especially when aphids become scarce. The Lotka–Volterra model predicts the coexistence of two species if intraspecific competition is stronger than interspecific interference interactions. Cycloneda sanguinea L. and Eriopis connexa (Germar) (both Coleoptera: Coccinellidae) coexist in sweet pepper crops in La Plata (Argentina) consuming mainly Myzus persicae (Sulzer) (Hemiptera: Aphididae). The present study used laboratory experiments to estimate levels of CANN and IGP by adults and larvae on eggs, and by adults on larvae, in both the presence and absence of prey (i.e., M. persicae), to explain the effect of prey on coexistence of these two predators. Levels of CANN by C. sanguinea and E. connexa were high in the absence of aphids, and decreased when prey was present. Intraguild predation was bidirectional and asymmetric. Adults and larvae of E. connexa were more voracious IG predators of C. sanguinea than vice versa, the former being the stronger IG predator and interference competitor. Eriopis connexa always won when larvae of the same instar were compared, whereas the larger larva always won when larvae were of different instars, regardless of species. In the presence of prey, CANN by both species decreased, but IGP by E. connexa on C. sanguinea remained high, suggesting that E. connexa could displace C. sanguinea via interspecific interference competition. Other factors potentially affecting the coexistence of C. sanguinea and E. connexa in sweet pepper crops are discussed.  相似文献   

7.
Pathogens may alter their hosts, which consequently increases transmission efficiency by vectors. We examined the effects of Raspberry leaf mottle virus [RLMV; Closterovirus (Closteroviridae)] and Raspberry latent virus [RpLV; Reovirus (Reoviridae)], alone and in a co‐infection in raspberry, Rubus idaeus L. (Rosaceae) cv. Meeker, on the behavior and performance of its vector, Amphorophora agathonica Hottes (Hemiptera: Aphididae). Longevity was increased in aphids feeding on all infected‐plant treatments compared with healthy plants, but aphid fecundity only increased in the co‐infection treatment. In a two‐way choice study between infected and healthy plants, aphids showed no difference in preference between plants after 30 min of exposure. After 24 h, aphids significantly preferred to settle on plants infected with RLMV over healthy, but healthy plants over plants infected with RpLV. There were no differences in settling preferences between healthy and co‐infected plants. An electrical penetration graph study showed no differences in aphid feeding behavior on plants infected with RLMV and RLMV+RpLV when compared with healthy controls. Our results are consistent with past findings that infected plant's impact vector performance and behavior, but also highlight the need to further investigate greater virus diversity and effects of mixed infections.  相似文献   

8.
The lady beetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) is an important predator of aphids in agroecosystems. The inundative release of coccinellid beetles can be an effective biological control strategy. An understanding of how biological control agents perceive and use stimuli from host plants is the key to successfully implement commercially produced predators. Here, we studied the relative role of visual and volatile cues. Dual‐choice assays using foraging‐naïve and foraging‐experienced P. japonica adults were conducted using cotton plants [Gossypium hirsutum L. (Malvaceae)] with or without infestation by the cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae). Overall, experienced beetles were more attracted than naïve beetles toward cues associated with aphid‐infested plants. Experienced beetles were also more responsive to olfactory cues compared with naïve beetles. Both foraging‐naïve and ‐experienced lady beetles integrate olfactory and visual cues from plants infested with aphids, with an apparently greater reliance on olfactory cues. The results suggest that foraging experience may increase prey location in P. japonica.  相似文献   

9.
Feeding behavior of Melanaphis sacchari Zehntner (Hemiptera: Aphididae) was studied on sugarcane, Saccharum spp. (Poaceae), cultivars HoCP 91‐555 (resistant), LCP 85‐384 (moderately resistant), and L 97‐128 (susceptible) using the electrical penetration graph (EPG) technique. Constitutive concentrations of total phenolics and available carbohydrates, water potential at the whole‐leaf tissue level, and free amino acids (FAAs) in phloem sap extracts, and in honeydew produced by aphids fed on L 97‐128 and HoCP 91‐555 were determined. Cultivar did not influence time for M. sacchari to access phloem sieve elements. Total time in sieve elements was ca. two‐fold greater on L 97‐128 than on HoCP 91‐555, whereas it did not differ from LCP 85‐384 in either cultivar. The mean duration of individual events associated with phloem sap ingestion was ca. 50% shorter on both HoCP 91‐555 and LCP 85‐384 than on L 97‐128. Although cultivar effects were not detected for levels of total phenolics, available carbohydrates, and water potential, two free essential amino acids, histidine and arginine, were absent from phloem sap in HoCP 91‐555. Two free essential amino acids, leucine and isoleucine, and two free non‐essential amino acids, tyrosine and proline, were absent from honeydew of aphids fed on HoCP 91‐555. These results suggest that despite apparent biosynthesis of some FAAs, the absence of important FAAs in the phloem sap of HoCP 91‐555 and the inability of M. sacchari and its endosymbionts (e.g., Buchnera) to derive specific free essential and non‐essential amino acids from other ingested molecules, possibly along with other unidentified factors, underlie the pest's decreased phloem sap ingestion and consequently reduced growth potential on HoCP 91‐555.  相似文献   

10.
Tobacco viruses transmitted by green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), cause severe disease in flue‐cured tobacco, Nicotiana tabacum L. (Solanaceae), in China and throughout the world. Field experiments were conducted in 2016 and 2017 in Longyan City, Fujian Province, China, to determine whether M. persicae and aphid‐transmitted virus diseases are affected by intercropping of oilseed rape, Brassica napus L. (Brassicaceae), in tobacco fields. The results showed that, compared with those in monocultured fields, the densities of M. persicae and winged aphids in intercropped fields significantly decreased in both 2016 and 2017. In particular, the appearance of winged aphids was delayed by ca. 7 days. Moreover, the densities of Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae), a parasitoid of the aphid, significantly increased in 2016 and 2017. Accordingly, the incidence rates of aphid‐transmitted virus diseases (those caused by the cucumber mosaic virus, potato virus Y, and tobacco etch virus) significantly decreased in the intercropped fields in 2016 and 2017. Tobacco yields and monetary value significantly increased in 2016 (by 10–25 and 14–29%, respectively) and 2017 (by 17–22 and 22–34%, respectively). Consequently, our results suggest that intercropping oilseed rape in tobacco fields is a good approach to regulating and controlling aphids and tobacco mosaic viruses, for example potyvirus, and this intercropping can help control aphid‐transmitted virus diseases in tobacco.  相似文献   

11.
Host‐associated differentiation (HAD) is the formation of genetically distinct, host‐associated populations created and maintained by ecologically mediated reproductive isolation. HAD potentially accounts for species origins in parasites, including herbivorous insects. Although case studies testing the occurrence of HAD are accumulating, it is still unclear how common HAD is and which specific ecological traits explain its occurrence. To address these issues, studies are needed that include negative results (i.e., instances in which parasite populations do not exhibit HAD) and test for HAD across communities (i.e., several parasite species on the same set of host species). In this study, HAD was tested in a community of six species of Aphidomorpha (Hemiptera) that share a host‐plant pair: pecan [Carya illinoinensis (Wangenh.) K.Koch] and water hickory [Carya aquatica (F.Michx) Nutt., both Juglandaceae] trees. All six species are parthenogenetic and three species are endophagous, traits that can exacerbate host‐specific selection. AFLP markers were employed to detect the presence of genetically distinct, host‐associated populations for each insect species. Strict HAD (i.e., the occurrence of genetically distinct pecan‐associated and water hickory‐associated genotypes) was found in Phylloxera notabilis Pergande (Phylloxeridae), Phylloxera devastatrix Pergande, and Monelliopsis pecanis Bissel (Aphididae). Monellia caryella Fitch (Aphididae) displayed a pattern of partial HAD (i.e., the occurrence of only a genetically distinct pecan‐associated genotype). No HAD was found in Melanocallis caryaefoliae Davis (Aphididae) or Phylloxera texana Stoetzel. The pattern of HAD occurrence in the pecan and water hickory Aphidomorpha community indicated that neither parthenogenesis nor endophagy sufficiently explain the occurrence of HAD in this system.  相似文献   

12.
Nitrogen is a critical factor for plant development and nitrogen input is one of the important tactics to enhance the development and yield of crops. Nevertheless, nitrogen input could influence the occurrence of insects positively or negatively. Nitrogen is also one of the main elements composing the insecticidal crystal (Cry) protein. Cry protein production could affect nitrogen partitioning in Bt plants and as such nitrogen input may influence insect pest management in transgenic Bt rice, Oryza sativa L. (Poaceae). To test this possibility, we evaluated the impacts of nitrogen regimes on the main insect pests and their predators on two Bt rice lines, T2A‐1 and T1C‐19, expressing Cry2A and Cry1C, respectively, and their non‐transgenic parental counterpart MH63. The results showed that Cry proteins with different nitrogen regimes have enough insecticidal activity on rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae), in both laboratory and field experiments. Laboratory studies indicated that relevant parameters of ecological fitness in brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a non‐target insect pest, were significantly affected by nitrogen input both on Bt and MH63 rice lines. Nymphal survival, female adult longevity, and egg hatchability in N. lugens differed significantly among rice varieties. The experiments conducted in rice fields also demonstrated that nitrogen was positively correlated with the abundance of N. lugens on Bt rice, similar to that on MH63 rice. The abundances of two predators – the wolf spider Pirata subpiraticus (Boesenberg & Strand) (Araneae: Lycosidae) and the bug Cyrthorhinus lividipennis Reuter (Hemiptera: Miridae) – were significantly affected by rice growth stages but not by nitrogen input and rice varieties. In conclusion, the above results indicate that high nitrogen regimes for Bt rice (T2A‐1 and T1C‐19) and non‐Bt rice (MH63) cannot facilitate the management of insect pests.  相似文献   

13.
Augmentative biological control by predaceous ladybird beetles can be improved by using flightless morphs, which have longer residence times on the host plants. The two‐spot ladybird beetle, Adalia bipunctata (L.) (Coleoptera: Coccinellidae), is used for the biological control of aphids in greenhouses and on urban trees. Flightlessness due to truncated wings occurs at very low frequency in some natural populations of A. bipunctata. Pure‐breeding strains of this 'wingless' genotype of A. bipunctata can easily be obtained in the laboratory. Such strains have not been commercialized yet due to concerns about their reduced fitness compared to wild‐type strains, which renders mass production more expensive. Wingless strains exhibit, however, wide intra‐population phenotypic variation in the extent of wing truncation which is related to fitness traits. We here use classical quantitative genetic techniques to study the heritability and genetic architecture of variation in wing truncation in a wingless strain of A. bipunctata. Split‐families reared at one of two temperatures revealed strong family‐by‐temperature interaction: heritability was estimated as 0.64 ± 0.09 at 19 °C and 0.29 ± 0.06 at 29 °C. Artificial selection in opposite directions at 21 °C demonstrated that the degree of wing truncation can be altered within a few generations resulting in wingless phenotypes without any wing tissue (realized h2 = 0.72), as well as those with minimal truncations (realized h2 = 0.61) in two replicates. The latter lines produced more than twice as many individuals. This indicates that selective breeding of wing truncation may be exploited to improve mass rearing of flightless strains of A. bipunctata for commercial biological control. Our work illustrates that cryptic variation can also be a source for the selective breeding of natural enemies.  相似文献   

14.
The population structure of parasites is central to the ecology and evolution of host‐parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well‐separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host—a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host‐parasite system.  相似文献   

15.
16.
17.
18.
Biological invasions are projected to be the main driver of biodiversity and ecosystem function loss in lakes in the 21st century. However, the extent of these future losses is difficult to quantify because most invasions are recent and confounded by other stressors. In this study, we quantified the outcome of a century‐old invasion, the introduction of common carp to North America, to illustrate potential consequences of introducing non‐native ecosystem engineers to lakes worldwide. We used the decline in aquatic plant richness and cover as an index of ecological impact across three ecoregions: Great Plains, Eastern Temperate Forests and Northern Forests. Using whole‐lake manipulations, we demonstrated that both submersed plant cover and richness declined exponentially as carp biomass increased such that plant cover was reduced to <10% and species richness was halved in lakes in which carp biomass exceeded 190 kg ha?1. Using catch rates amassed from 2000+ lakes, we showed that carp exceeded this biomass level in 70.6% of Great Plains lakes and 23.3% of Eastern Temperate Forests lakes, but 0% of Northern Forests lakes. Using model selection analysis, we showed that carp was a key driver of plant species richness along with Secchi depth, lake area and human development of lake watersheds. Model parameters showed that carp reduced species richness to a similar degree across lakes of various Secchi depths and surface areas. In regions dominated by carp (e.g., Great Plains), carp had a stronger impact on plant richness than human watershed development. Overall, our analysis shows that the introduction of common carp played a key role in driving a severe reduction in plant cover and richness in a majority of Great Plains lakes and a large portion of Eastern Temperate Forests lakes in North America.  相似文献   

19.
Tent‐making bats modify leaves to build refuges. Leaf modification involves energetic and defense costs that should be balanced by the benefits of tent‐roosting. The alteration of the leaf's vascular system reduces the tent's life expectancy, so to obtain a benefit, bats are expected to use tents regularly as long as they remain functional and not modify more leaves than necessary. Over 2 yr, we documented the dynamics of tent construction and use by Uroderma convexum and other bat species in the palm Sabal mauritiiformis in a Colombian transitional dry forest. We also assessed tent condition and compared it to nonmodified leaves of approximately the same age in focal palms. Probability of tent use by U. convexum varied between 57 percent during a reproductive period and 4 percent outside of this period. Bats cut the main vein of folioles, partially affecting water transport in the leaf. However, there were no differences between tents and nonmodified leaves in deterioration scores or deterioration rates over 1 yr. During 2 yr, 48 tents were lost for different causes, but this loss was balanced by the construction of 51 new tents. Thus, bats maintained an excess of usable tents. Palm leaves are long‐lived and seem preadapted to sustain damage and remain viable, particularly in species growing in dry environments. We present several hypotheses to explain the advantage of maintaining a tent surplus.  相似文献   

20.
This study investigated the predominant leafhopper and treehopper (Hemiptera, Auchenorrhyncha) species in Citrus Variegated Chlorosis (CVC)‐affected citrus agroecosystems in Argentina, their seasonal fluctuation, and their potential role as vectors of Xylella fastidiosa Wells et al., using molecular methods for detection. More than 6 000 Auchenorrhyncha were collected from three citrus agroecosystems over a period of 3 years using yellow sticky traps and entomological nets. Cicadellidae and Membracidae were the most abundant families. Of the 43 species identified, five were predominant in citrus orchards, and three were predominant in weeds surrounding citrus plants. All predominant species and another four non‐predominant species tested positive for X. fastidiosa in PCR and real‐time PCR assays. In a transmission assay, Dechacona missionum (Berg), Tapajosa rubromarginata (Signoret), and Cyphonia clavigera (Fabricius) transmitted X. fastidiosa successfully. Scaphytopius bolivianus Oman and Frequenamia spiniventris (Linnavuori) populations increased once (during the summer), possibly due to favorable weather conditions, and Bucephalogonia xanthophis (Berg), Molomea lineiceps Young, and T. rubromarginata populations increased twice a year: once in summer and once in winter, coinciding with the increase in early citrus shoots (flush). Among the X. fastidiosa‐positive species, those with the higher population densities during the sprouting period, where trees are highly susceptible to infection, must be considered as most relevant vectors of CVC in the citrus‐growing areas in Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号