首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Additional chromosomal abnormalities are currently detected in Burkitt''s lymphoma. They play major roles in the progression of BL and in prognosis. The genes involved remain elusive. A whole-genome oligonucleotide array CGH analysis correlated with karyotype and FISH was performed in a set of 27 Burkitt''s lymphoma-derived cell lines and primary tumors. More than half of the 145 CNAs<2 Mb were mapped to Mendelian CNVs, including GSTT1, glutathione s-transferase and BIRC6, an anti-apoptotic protein, possibly predisposing to some cancers. Somatic cell line-specific CNVs localized to the IG locus were consistently observed with the 244 K aCGH platform. Among 136 CNAs >2 Mb, gains were found in 1q (12/27), 13q (7/27), 7q (6/27), 8q(4/27), 2p (3/27), 11q (2/27) and 15q (2/27). Losses were found in 3p (5/27), 4p (4/27), 4q (4/27), 9p (4/27), 13q (4/27), 6p (3/27), 17p (3/27), 6q (2/27),11pterp13 (2/27) and 14q12q21.3 (2/27). Twenty one minimal critical regions (MCR), (range 0.04–71.36 Mb), were delineated in tumors and cell lines. Three MCRs were localized to 1q. The proximal one was mapped to 1q21.1q25.2 with a 6.3 Mb amplicon (1q21.1q21.3) harboring BCA2 and PIAS3. In the other 2 MCRs, 1q32.1 and 1q44, MDM4 and AKT3 appeared as possible drivers of these gains respectively. The 13q31.3q32.1 <89.58–96.81> MCR contained an amplicon and ABCC4 might be the driver of this amplicon. The 40 Kb 2p16.1 <60.96–61> MCR was the smallest gained MCR and specifically encompassed the REL oncogene which is already implicated in B cell lymphomas. The most frequently deleted MCR was 3p14.1 <60.43–60.53> that removed the fifth exon of FHIT. Further investigations which combined gene expression and functional studies are essential to understand the lymphomagenesis mechanism and for the development of more effective, targeted therapeutic strategies.  相似文献   

2.
Agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) are severe congenital brain malformations with largely undiscovered causes. We conducted a large-scale chromosomal copy number variation (CNV) discovery effort in 255 ACC, 220 CBLH, and 147 PMG patients, and 2,349 controls. Compared to controls, significantly more ACC, but unexpectedly not CBLH or PMG patients, had rare genic CNVs over one megabase (p = 1.48×10−3; odds ratio [OR] = 3.19; 95% confidence interval [CI] = 1.89–5.39). Rare genic CNVs were those that impacted at least one gene in less than 1% of the combined population of patients and controls. Compared to controls, significantly more ACC but not CBLH or PMG patients had rare CNVs impacting over 20 genes (p = 0.01; OR = 2.95; 95% CI = 1.69–5.18). Independent qPCR confirmation showed that 9.4% of ACC patients had de novo CNVs. These, in comparison to inherited CNVs, preferentially overlapped de novo CNVs previously observed in patients with autism spectrum disorders (p = 3.06×10−4; OR = 7.55; 95% CI = 2.40–23.72). Interestingly, numerous reports have shown a reduced corpus callosum area in autistic patients, and diminished social and executive function in many ACC patients. We also confirmed and refined previously known CNVs, including significantly narrowing the 8p23.1-p11.1 duplication present in 2% of our current ACC cohort. We found six novel CNVs, each in a single patient, that are likely deleterious: deletions of 1p31.3-p31.1, 1q31.2-q31.3, 5q23.1, and 15q11.2-q13.1; and duplications of 2q11.2-q13 and 11p14.3-p14.2. One ACC patient with microcephaly had a paternally inherited deletion of 16p13.11 that included NDE1. Exome sequencing identified a recessive maternally inherited nonsense mutation in the non-deleted allele of NDE1, revealing the complexity of ACC genetics. This is the first systematic study of CNVs in congenital brain malformations, and shows a much higher prevalence of large gene-rich CNVs in ACC than in CBLH and PMG.  相似文献   

3.

Background

Over-expressed eukaryotic initiation factor 3a (eIF3a) in non-small cell lung cancer (NSCLC) contributed to cisplatin sensitivity. However, the role of eIF3a in oncogenesis was still controversial. This study was designed to investigate the prognostic impact of eIF3a and p27 in radically resected NSCLC patients.

Methods

The expression levels of subcellular eIF3a and p27 were evaluated immunohistochemically in 537 radically resected NSCLC samples, and another cohort of 210 stage II NSCLC patients. Disease specific survival (DSS) and disease free survival (DFS) were analyzed by Kaplan-Meier method and Cox regression model.

Results

The subcellular expression of eIF3a was strongly correlated with status of p27 (Spearman rank coefficient correlation for cytoplasmic eIF3a and p27 = 0.653, for nuclear staining = 0.716). Moreover, survival analysis revealed favorable prognostic impact of nuclear eIF3a, p27, and the combination high nuclear staining on NSCLC (Hazards Ratio = 0.360, 95%CI = 0.109–0.782, P = 0.028). In addition, interaction research between biomarkers and chemotherapy status disclosed cisplatin-based regimen trend to prolong DSS of stage II NSCLC patients with high eIF3a-C (P = 0.036)and low p27-N (P = 0.031).

Conclusions

Our findings suggested altered eIF3a expression closely correlated with p27 status, and the association was of prognostic value for resected NSCLC. Altered expression of eIF3a and p27 predicted prognosis of NSCLC independently.  相似文献   

4.
Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man''s risk of disease by 10% (OR 1.10 [1.04–1.16], p<2×10−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p<1×10−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.  相似文献   

5.

Background

The prognostic significance of p16 promoter hypermethylation in patients with non-small cell lung cancer (NSCLC) is still controversial. This analysis presents pooled estimates of the association to better elucidate whether p16 methylation has a prognostic role in NSCLC.

Methods

Relevant studies were identified by searching PubMed, Embase and Web of Science databases until June 2012. The association of p16 methylation with both overall survival (OS) and disease-free survival (DFS) was preformed. Studies were pooled and summary hazard ratios (HR) were calculated. Subgroup analyses, sensitivity analysis and publication bias were also conducted.

Results

A total of 18 studies containing 2432 patients met the inclusion criteria and had sufficient survival data for quantitative aggregation. The results showed that p16 methylation was an indicator of poor prognosis in NSCLC. The HR was 1.36 (95% CI: 1.08–1.73, I2 = 56.7%) and 1.68 (95% CI: 1.12–2.52, I2 = 38.7%) for OS and DFS, respectively. Subgroup analyses were carried out. The HRs of fresh and paraffin tissue were 1.50 (95% CI: 1.11–2.01) and 1.10 (95% CI: 0.77–1.57). The pooled HR was 1.40 (95% CI: 1.02–1.92) for methylation-specific PCR (MSP) and 1.26 (95% CI: 0.87–1.82) for quantitative MSP (Q-MSP). The combined HR of the 16 studies reporting NSCLC as a whole indicated that patients with p16 hypermethylation had poor prognosis. No significant association was found when adenocarcinoma subtype pooled. When seven studies on DFS were aggregated, the HR was 1.68 (95% CI: 1.12–2.52) without significant heterogeneity. Moreover, no obvious publication bias was detected on both OS and DFS.

Conclusion

The meta-analysis findings support the hypothesis that p16 methylation is associated with OS and DFS in NSCLC patients. Large well-designed prospective studies are now needed to confirm the clinical utility of p16 methylation as an independent prognostic marker.  相似文献   

6.
7.
8.

Background

The prognostic value of p16 promoter hypermethylation in cancers has been evaluated for several years while the results remain controversial. We thus performed a systematic review and meta-analysis of studies assessing the impact of p16 methylation on overall survival (OS) and disease-free survival (DFS) to clarify this issue.

Methods

We searched Pubmed, Embase and ISI web of knowledge to identify studies on the prognostic impact of p16 hypermethylation in cancers. A total of 6589 patients from 45 eligible studies were included in the analysis. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to estimate the effect using random-effects model.

Results

The analysis indicated that p16 hypermethylation had significant association with poor OS of non-small cell lung cancer (NSCLC) (HR 1.74, 95% CI: 1.36–2.22) and colorectal cancer (CRC) (HR 1.80; 95% CI 1.27–2.55). Moreover, the significant correlation was present between p16 hypermethylation and DFS of NSCLC (HR 2.04, 95% CI: 1.19–3.50) and head and neck cancer (HR 2.24, 95% CI: 1.35–3.73). Additionally, in the analysis of the studies following REMARK guidelines more rigorously, p16 hypermethylation had unfavorable impact on OS of NSCLC (HR 1.79, 95% CI: 1.35–2.39) and CRC (HR 1.96, 1.16–3.34), and on DFS of NSCLC (HR 2.12, 95% CI: 1.21–3.72) and head and neck cancer (HR 2.24, 95% CI: 1.35–3.73).

Conclusions

p16 hypermethylation might be a predictive factor of poor prognosis in some surgically treated cancers, particularly in NSCLC.  相似文献   

9.
The JIL-1 kinase mainly localizes to euchromatic interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase in Drosophila. However, recent findings raised the possibility that the binding of some H3S10ph antibodies may be occluded by the H3K9me2 mark obscuring some H3S10 phosphorylation sites. Therefore, we have characterized an antibody to the epigenetic H3S10phK9me2 double mark as well as three commercially available H3S10ph antibodies. The results showed that for some H3S10ph antibodies their labeling indeed can be occluded by the concomitant presence of the H3K9me2 mark. Furthermore, we demonstrate that the double H3S10phK9me2 mark is present in pericentric heterochromatin as well as on the fourth chromosome of wild-type polytene chromosomes but not in preparations from JIL-1 or Su(var)3-9 null larvae. Su(var)3-9 is a methyltransferase mediating H3K9 dimethylation. Furthermore, the H3S10phK9me2 labeling overlapped with that of the non-occluded H3S10ph antibodies as well as with H3K9me2 antibody labeling. Interestingly, when a Lac-I-Su(var)3-9 transgene is overexpressed, it upregulates H3K9me2 dimethylation on the chromosome arms creating extensive ectopic H3S10phK9me2 marks suggesting that the H3K9 dimethylation occurred at euchromatic H3S10ph sites. This is further supported by the finding that under these conditions euchromatic H3S10ph labeling by the occluded antibodies was abolished. Thus, our findings indicate a novel role for the JIL-1 kinase in epigenetic regulation of heterochromatin in the context of the chromocenter and fourth chromosome by creating a composite H3S10phK9me2 mark together with the Su(var)3-9 methyltransferase.  相似文献   

10.
In zygotes, a global loss of DNA methylation occurs selectively in the paternal pronucleus before the first cell division, concomitantly with the appearance of modified forms of 5-methylcytosine. The adjacent maternal pronucleus and certain paternally-imprinted loci are protected from this process. Nakamura et al. recently clarified the molecular mechanism involved: PGC7/Stella/Dppa3 binds to dimethylated histone 3 lysine 9 (H3K9me2), thereby blocking the activity of the Tet3 methylcytosine oxidase in the maternal genome as well as at certain imprinted loci in the paternal genome.DNA methylation is a crucial epigenetic modification that regulates imprinting (differential silencing of maternal or paternal alleles) and repression of retrotransposons and other parasitic DNA, as well as possibly X-chromosome inactivation and cellular differentiation. DNA methylation needs to be faithfully maintained throughout the life cycle, since loss of DNA methylation can result in gene dosage problems, dysregulation of gene expression, and genomic instability due to retrotransposon reactivation1. Nevertheless, genome-wide loss of DNA methylation has been observed during germ cell development2 and in the paternal pronucleus soon after fertilization3.For almost a decade, the global decrease of DNA methylation observed in the paternal genome within a few hours of fertilization was ascribed to an “active”, replication-independent process3. The maternal pronucleus is spared and instead undergoes “passive”, replication-dependent demethylation during early embryogenesis, arising from inhibition of the DNA maintenance methyltransferase Dnmt1 (Dnmt1 is normally recruited to newly-replicated DNA because of the high affinity of its obligate partner, UHRF1, for hemi-methylated DNA strands, which are produced from symmetrically-methylated CpG dinucleotides as a result of DNA replication). The basis for active and passive demethylation of the paternal and maternal genomes remained a mystery until proteins of the TET family – TET1, TET2 and TET3 in humans – were discovered to be Fe(II)- and 2-oxoglutarate-dependent enzymes capable of oxidizing 5-methylcytosine (5mC) in DNA4,5,6. TET enzymes serially convert 5mC into 5-hydroxymethyl-cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC)5,7,8.With the generation of specific antibodies to 5hmC, it became clear that the supposed “active demethylation” of the paternal pronucleus in mouse zygote after fertilization was due to the inability of anti-5mC antibodies to recognize 5hmC and other 5mC oxidation products9,10. The enzyme responsible for 5mC oxidation was shown to be Tet3, which unlike Tet1 and Tet2 is highly expressed in mouse oocytes and zygotes. RNAi-mediated depletion of Tet3 decreased the staining of the paternal pronucleus with 5hmC, suggesting that immediately after fertilization, Tet3 in the zygote selectively oxidizes 5mC in the paternal genome to 5hmC9,10.How is the maternal pronucleus protected from Tet3 activity? Nakamura et al.11 previously showed that zygotes lacking PGC7/Stella/Dppa3 lose asymmetric regulation of DNA methylation, instead showing global loss of 5mC staining in both paternal and maternal pronuclei. This was correlated with hypomethylation at several maternally-imprinted loci (Peg1, Peg3, Peg10) in PGC7-deficient zygotes, as judged by bisulfite sequencing. Further, certain paternally-imprinted loci (H19, Rasgrf1), which are normally protected from global loss of methylation in the paternal genome, also became hypomethylated in PGC7-deficient zygotes. These data suggested that PGC7 protects the maternal genome, as well as certain paternally imprinted loci, from loss of 5mC.In their recent publication, Nakamura et al.12 elegantly extended these findings to address the mechanism involved. Based on the fact that a major difference between maternal and paternal genomes is that the maternal genome contains histones, whereas the DNA of the entering sperm is tightly packaged with protamine, they asked whether PGC7 recognizes specific histone marks. Indeed, the maternal genome harbors considerable levels of the histone mark H3K9me211, leading them to examine whether PGC7 distinguishes maternal and paternal genomes by recognizing H3K9me2 in the maternal genome. Using wild-type (WT) ES cells and ES cells deficient in the G9a lysine methyltransferase which generates H3K9me2 mark, they showed that PGC7 associated loosely with nucleosomes and chromatin lacking H3K9me2, but tightly if H3K9me2 was present. The binding was recapitulated using recombinant bacterially-expressed PGC7 and histone tail peptides, indicating a direct interaction of PGC7 with the H3K9me2 mark. In agreement, genomic loci enriched with H3K9me2 recruited PGC7 as judged by chromatin immunoprecipitation (ChIP), but this recruitment was abrogated in G9a-deficient ES cells. These data indicated that PGC7 targets genomic regions occupied by nucleosomes containing H3K9me2 (Figure 1); an interesting extension would be to ask whether loss of maternal G9a also results in 5hmC conversion in the maternal pronucleus in zygotes.Open in a separate windowFigure 1Schematic view of paternal (left) and maternal (right) genomes soon after fertilization. Paternal and maternal pronuclei are indicated with immunostaining results in the boxes. PGC7 binds H3K9me2 in the maternal pronucleus and at certain paternally-imprinted loci (H19, Rasgrf1) in the paternal pronucleus, thereby potentially regulating chromatin organization to interfere with Tet3 accessibility.Next, Nakamura et al.12 tested by immunocytochemistry whether PGC7 in zygotes also required H3K9me2. It is known that H3K9me2 staining is concentrated in the maternal but not the paternal pronucleus13. Using conventional staining methods in which the cells are first fixed and then permeabilized to allow antibodies to enter the cell, the authors observed in their earlier study that PGC7 bound to both pronuclei11. Remarkably, by simply reversing the order of the fixation and permeabilization steps – permeabilizing first to allow the loss of loosely bound proteins by dissociation, then fixing and staining – they found that PGC7 associated much more tightly with the maternal pronucleus that bears H3K9me2 mark. Injection of mRNA encoding Jhdm2a (an H3K9me1/ me2-specific demethylase) into zygotes eliminated staining for H3K9me2 as well as PGC7 in the maternal pronucleus, and concomitantly caused loss of 5mC and acquisition of 5hmC. Taken together, these data strongly suggested that PGC7 was selectively recruited to the maternal pronucleus through binding H3K9me2, and that this binding protected zygotic maternal DNA from oxidation of 5mC to 5hmC and beyond (Figure 1).These findings led Nakamura et al. to investigate how PGC7 controls Tet3 activity in zygotes. They showed (in cells that were permeabilized before fixation and immunocytochemistry) that Tet3 was tightly associated only with the paternal pronucleus in WT zygotes, but was present in both pronuclei in PGC7-deficient zygotes. When PGC7 was prevented from binding to the maternal pronucleus by injection of Jhdm2a mRNA, Tet3 became tightly associated with both pronuclei. In other words, loss of PGC7 or loss of H3K9me2 that recruits PGC7 had the same effect – eliminating selective association of Tet3 with the paternal genome. The implication is that PGC7 – which preferentially binds the maternal genome – somehow promotes the selective binding of Tet3 to the paternal genome, thus permitting rapid 5mC oxidation in paternal but not maternal DNA (Figure 1).PGC7 is a small protein (150 amino acids (aa) in the mouse, 159 aa in humans) whose sequence is only moderately conserved. Nakamura et al.12 showed that the binding of PGC7 to H3K9me2 required the N-terminal half of PGC7, whereas its ability to exclude Tet3 from the maternal pronucleus required the C-terminal half. It is unclear how Tet3 exclusion is mediated. One possibility is that the C-terminal region of PGC7 sterically excludes Tet3 from binding, either to DNA or to a chromatin mark; another is that the C-terminal region of PGC7 is capable of altering chromatin configuration to prevent the binding of Tet3 to chromatin. In support of the latter hypothesis, the rate with which micrococcal nuclease (MNase) digested high-molecular weight chromatin was significantly slower in WT ES cells in which PGC7 was present, compared to PGC7−/− and G9a−/− ES cells in which PGC7 was either absent or not recruited to DNA because of the loss of H3K9me2 mark. In contrast, DNA methylation did not alter the chromatin association of PGC7 or its ability to protect high-molecular weight chromatin from MNase digestion, as shown by using Dnmt1−/−Dnmt3a−/−Dnmt3b−/− triple knockout ES cells that completely lack DNA methylation.How does PGC7 protect paternally-imprinted loci from Tet3-mediated 5mC oxidation? Although the haploid sperm genome is mostly packaged with protamine, a genome-wide analysis revealed that 4% of the genome of mature human sperm bears nucleosomes located at developmental and imprinted genes14. Nakamura et al.12 found that among paternally-imprinted differentially methylated regions (DMRs), the H19 and Rasgrf1 DMRs contained H3K9me2 whereas the Meg3 DMR did not, consistent with their previous finding that in PGC7-deficient zygotes, the H19 and Rasgrf1 DMRs were hypomethylated but the Meg3 DMR was unaffected11. Therefore, PGC7 may be recruited to paternally-imprinted loci through H3K9me2-containing nucleosomes that pre-exist in the sperm haploid genome upon fertilization. Alternatively, Nakamura et al. point out that protamine in the sperm is replaced soon after fertilization by the histone H3.3 variant, which in somatic cells does not bear H3K9me2 mark.In conclusion, Nakamura et al.12 demonstrate unambiguously that PGC7 specifically binds to H3K9me2 in the maternal genome in zygotes, where its global occupancy excludes Tet3 and inhibits Tet3-mediated 5mC oxidation. This novel finding provides new insights into the global alterations of DNA methylation status that occur during early embryogenesis. Follow-up questions abound. First, can PGC7 protect other methylated loci such as transposable elements and the X-chromosome? It would be interesting to assess H3K9me2 at these loci. Second, how does the N-terminal half of PGC7 recognize H3K9me2? Structural characterization of this interaction may elucidate a novel epigenetic “reader” domain specific for H3K9me2. Third, PGC7 is a marker for cells of the inner cell mass, and is co-expressed with Tet1 and Tet2 rather than Tet3 in ESCs15. Does PGC7 also antagonize Tet1 and Tet2 and protect imprinted loci in ESCs? Fourth, how does PGC7 inhibit the access of Tet3 to chromatin? Considering that PGC7 is small and is not equipped with known enzymatic domains, it is likely that PGC-interacting proteins, rather than PGC7 itself, function to regulate chromatin status. Fifth, how is Tet3 recruited to paternal chromatin – are there specific histone or other epigenetic marks that facilitate Tet3 recruitment? Finally, while technically challenging, it seems imperative to identify the target genes of PGC7 and Tet3, by profiling the genomic location of 5hmC and other 5mC oxidation products in the paternal and maternal genomes of zygotes from WT, Tet3-deficient and PGC7-deficient mice.  相似文献   

11.
12.
13.
14.
The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2′-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3.  相似文献   

15.
To understand the molecular mechanisms underlying paramutation, we examined the role of Unstable factor for orange1 (Ufo1) in maintaining paramutation at the maize pericarp color1 (p1) and booster1 (b1) loci. Genetic tests revealed that the Ufo1-1 mutation disrupted silencing associated with paramutation at both p1 and b1. The level of up regulation achieved at b1 was lower than that at p1, suggesting differences in the role Ufo1-1 plays at these loci. We characterized the interaction of Ufo1-1 with two silenced p1 epialleles, P1-rr′ and P1-prTP, that were derived from a common P1-rr ancestor. Both alleles are phenotypically indistinguishable, but differ in their paramutagenic activity; P1-rr′ is paramutagenic to P1-rr, while P1-prTP is non-paramutagenic. Analysis of cytosine methylation revealed striking differences within an enhancer fragment that is required for paramutation; P1-rr′ exhibited increased methylation at symmetric (CG and CHG) and asymmetric (CHH) sites, while P1-prTP was methylated only at symmetric sites. Both silenced alleles had higher levels of dimethylation of lysine 9 on histone 3 (H3K9me2), an epigenetic mark of silent chromatin, in the enhancer region. Both epialleles were reactivated in the Ufo1-1 background; however, reactivation of P1-rr′ was associated with dramatic loss of symmetric and asymmetric cytosine methylation in the enhancer, while methylation of up-regulated P1-prTP was not affected. Interestingly, Ufo1-1–mediated reactivation of both alleles was accompanied with loss of H3K9me2 mark from the enhancer region. Therefore, while earlier studies have shown correlation between H3K9me2 and DNA methylation, our study shows that these two epigenetic marks are uncoupled in the Ufo1-1–reactivated p1 alleles. Furthermore, while CHH methylation at the enhancer region appears to be the major distinguishing mark between paramutagenic and non-paramutagenic p1 alleles, H3K9me2 mark appears to be important for maintaining epigenetic silencing.  相似文献   

16.
Endometriosis is a complex gynecological condition that affects 6–10% of women in their reproductive years and is defined by the presence of endometrial glands and stroma outside the uterus. Twin, family, and genome-wide association (GWA) studies have confirmed a genetic role, yet only a small part of the genetic risk can be explained by SNP variation. Copy number variants (CNVs) account for a greater portion of human genetic variation than SNPs and include more recent mutations of large effect. CNVs, likely to be prominent in conditions with decreased reproductive fitness, have not previously been examined as a genetic contributor to endometriosis. Here we employ a high-density genotyping microarray in a genome-wide survey of CNVs in a case-control population that includes 2,126 surgically confirmed endometriosis cases and 17,974 population controls of European ancestry. We apply stringent quality filters to reduce the false positive rate common to many CNV-detection algorithms from 77.7% to 7.3% without noticeable reduction in the true positive rate. We detected no differences in the CNV landscape between cases and controls on the global level which showed an average of 1.92 CNVs per individual with an average size of 142.3 kb. On the local level we identify 22 CNV-regions at the nominal significance threshold (P<0.05), which is greater than the 8.15 CNV-regions expected based on permutation analysis (P<0.001). Three CNV''s passed a genome-wide P-value threshold of 9.3×10−4; a deletion at SGCZ on 8p22 (P = 7.3×10−4, OR = 8.5, Cl = 2.3–31.7), a deletion in MALRD1 on 10p12.31 (P = 5.6×10−4, OR = 14.1, Cl = 2.7–90.9), and a deletion at 11q14.1 (P = 5.7×10−4, OR = 33.8, Cl = 3.3–1651). Two SNPs within the 22 CNVRs show significant genotypic association with endometriosis after adjusting for multiple testing; rs758316 in DPP6 on 7q36.2 (P = 0.0045) and rs4837864 in ASTN2 on 9q33.1 (P = 0.0002). Together, the CNV-loci are detected in 6.9% of affected women compared to 2.1% in the general population.  相似文献   

17.
It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of “chromatin-CGH”) and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14–15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.  相似文献   

18.
Herpes simplex virus 1 (HSV-1) genomes are associated with the repressive heterochromatic marks H3K9me2/me3 and H3K27me3 during latency. Previous studies have demonstrated that inhibitors of H3K9me2/me3 histone demethylases reduce the ability of HSV-1 to reactivate from latency. Here we demonstrate that GSK-J4, a specific inhibitor of the H3K27me3 histone demethylases UTX and JMJD3, inhibits HSV-1 reactivation from sensory neurons in vitro. These results indicate that removal of the H3K27me3 mark plays a key role in HSV-1 reactivation.  相似文献   

19.
20.
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non‐coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2‐dependent H3K27me3 and SETD8‐dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3‐specific intracellular antibody or H3K27me3‐mintbody. By combining live‐cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP‐seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号