首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyglutamine diseases are a class of inherited neurodegenerative disorders caused by the expansion of a polyglutamine tract within the respective proteins. Clinical studies have revealed that the forming of neuronal intranuclear inclusions by the disease protein is a common pathological feature of polyglutamine diseases. Although there has been considerable progress in understanding polyglutamine diseases, many questions regarding their mechanism are still unanswered. The finding that molecular chaperones are associated with ubiquitinated intranuclear inclusions clearly indicates a crucial role of molecular chaperones in the generation of these fatal diseases. Molecular and chemical chaperones have been found to be a good agent for suppressing many polyglutamine diseases in several animal models. In this review, I discuss the roles of the ubiquitin-proteasome pathway and molecular chaperones in the development of polyglutamine diseases and probable approach for the prevention of many of these fatal disorders using molecular chaperones as a therapeutic agent. Newly found chemical chaperones have been demonstrated to be potentially useful and could be used as a therapeutic strategy in preventing many versions of polyglutamine diseases.  相似文献   

2.
Protein folding and diseases   总被引:3,自引:0,他引:3  
For most of proteins to be active, they need well-defined three-dimensional structures alone or in complex. Folding is a process through which newly synthesized proteins get to the native state. Protein folding inside cells is assisted by various chaperones and folding factors, and misfolded proteins are eliminated by the ubiquitin-proteasome degradation system to ensure high fidelity of protein expression. Under certain circumstances, misfolded proteins escape the degradation process, yielding to deposit of protein aggregates such as loop-sheet polymer and amyloid fibril. Diseases characterized by insoluble deposits of proteins have been recognized for long time and are grouped as conformational diseases. Study of protein folding mechanism is required for better understanding of the molecular pathway of such conformational diseases.  相似文献   

3.
Molecular chaperones have the capacity to prevent inappropriate interactions between aggregation-prone folding or unfolding intermediates created in the cell during protein synthesis or in response to physical and chemical stress. What happens when surveillance by molecular chaperones is evaded or overwhelmed and aggregates accumulate? Recent progress in the elucidation of Hsp100/Clp function suggests that intracellular aggregates or stable complexes can be progressively dissolved by the action of chaperones that act as molecular crowbars or ratchets. These insights set the stage for new progress in the understanding and treatment of diseases of protein folding.  相似文献   

4.
Chaperones in control of protein disaggregation   总被引:1,自引:0,他引:1       下载免费PDF全文
The chaperone protein network controls both initial protein folding and subsequent maintenance of proteins in the cell. Although the native structure of a protein is principally encoded in its amino-acid sequence, the process of folding in vivo very often requires the assistance of molecular chaperones. Chaperones also play a role in a post-translational quality control system and thus are required to maintain the proper conformation of proteins under changing environmental conditions. Many factors leading to unfolding and misfolding of proteins eventually result in protein aggregation. Stress imposed by high temperature was one of the first aggregation-inducing factors studied and remains one of the main models in this field. With massive protein aggregation occurring in response to heat exposure, the cell needs chaperones to control and counteract the aggregation process. Elimination of aggregates can be achieved by solubilization of aggregates and either refolding of the liberated polypeptides or their proteolysis. Here, we focus on the molecular mechanisms by which heat-shock protein 70 (Hsp70), Hsp100 and small Hsp chaperones liberate and refold polypeptides trapped in protein aggregates.  相似文献   

5.
Most neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease and other polyglutamine diseases are associated with degeneration and death of specific neuronal populations due to misfolding or aggregation of certain proteins. These aggregates often contain ubiquitin that is the signal for proteolysis by the ubiquitin-proteasome system, and chaperone proteins that are involved in the assistance of protein folding. Here we review the role of protein quality control systems in the pathogenesis of neurodegenerative diseases, and aim to learn more from the cooperation between molecular chaperones and ubiquitin-proteasome system responding to cellular protein aggregates, in order to find molecular targets for therapeutic intervention.  相似文献   

6.
大量遗传性疾病的发生是由于基因突变引起蛋白质错误折叠而不能运输到作用位点,从而导致功能缺陷.近年来兴起的药物分子伴侣是恢复蛋白质折叠运输缺陷的新疗法,这类化合物一般为目的蛋白的底物类似物、受体配基或酶抑制剂等化学小分子,具细胞通透性,能在内质网中特异性识别并结合突变蛋白,校正并稳定其正确构象,协助其运输到正确位点,直接恢复突变蛋白功能,可治疗各种南蛋白质折叠运输缺陷导致的内分泌及代谢疾病.目前已报道的由药物分子伴侣恢复功能的突变蛋白主要为质膜蛋白及细胞器蛋白,如ATP结合盒转运蛋白、G-蛋白耦联受体及溶酶体酶等.大量的细胞及动物实验结果显示了药物分子伴侣的临床应用前景广阔,目前已有一例临床实验获得了成功.  相似文献   

7.
A great deal of attention has been paid to so-called amyloid diseases, in which the proteins responsible for the cell death and resultant diseases undergo conformational changes and aggregate in vivo, although whether aggregate formation is the cause or the result of the cell death is controversial. Recently, an increasing attention is given to protein folding diseases tightly associated with mutations. These mutations result in temperature-dependent misfolding and hence inactivation of the proteins, leading to loss of function, at physiological temperature; at low so-called permissive temperatures, the mutant proteins correctly fold and acquire functional structure. Alternatively, activation can be induced by use of osmolytes, which restores the folding of the mutant proteins and hence are called chemical chaperones. The osmolytes are compatible with macromolecular function and do stabilize the native protein structure. However, chemical chaperones require high concentrations for effective folding of mutant proteins and hence are too toxic in in-vivo applications. This limitation can be overcome by pharmacological chaperones, whose functions are similar to the chemical chaperones, but occur at much lower concentrations, i.e., physiologically acceptable concentrations. Although the research and clinical importance of pharmacological chaperones has been emphasized, the initial and central concept of osmolytes is largely ignored. Here we attempt to bridge the concept of osmolytes to applications of pharmacological chaperones.  相似文献   

8.
László Smeller 《Proteins》2016,84(7):1009-1016
This paper proposes a generalization of the well‐known folding funnel concept of proteins. In the funnel model the polypeptide chain is treated as an individual object not interacting with other proteins. Since biological systems are considerably crowded, protein–protein interaction is a fundamental feature during the life cycle of proteins. The folding superfunnel proposed here describes the folding process of interacting proteins in various situations. The first example discussed is the folding of the freshly synthesized protein with the aid of chaperones. Another important aspect of protein–protein interactions is the folding of the recently characterized intrinsically disordered proteins, where binding to target proteins plays a crucial role in the completion of the folding process. The third scenario where the folding superfunnel is used is the formation of aggregates from destabilized proteins, which is an important factor in case of several conformational diseases. The folding superfunnel constructed here with the minimal assumption about the interaction potential explains all three cases mentioned above. Proteins 2016; 84:1009–1016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Pathologies associated with protein misfolding have been observed in neurodegenerative diseases such as Alzheimer’s disease, metabolic diseases like phenylketonuria, and diseases affecting structural proteins like collagen or keratin. Misfolding of mutant proteins in these and many other diseases may result in premature degradation, formation of toxic aggregates, or incorporation of toxic conformations into structures. We review common traits of these diverse diseases under the unifying view of protein misfolding. The molecular pathogenesis is discussed in the context of protein quality control systems consisting of molecular chaperones and intracellular proteases that assist the folding and supervise the maintenance of the folded structure. Furthermore, genetic and environmental factors that may modify the severity of these diseases are underscored. The present article represents a partly revised and updated version of chapter 1 published earlier in volume 232 of the series Methods in Molecular Biology (Walker, J. M., ed., Humana Press, Totowa, NJ), Protein Misfolding and Disease: Principles and Protocols (Bross, P. & Gregersen, N., eds.), pp. 3–16 (2003).  相似文献   

10.
All molecular chaperones known to date are well organized, folded protein molecules whose three-dimensional structure are believed to play a key role in the mechanism of substrate recognition and subsequent assistance to folding. A common feature of all protein and nonprotein molecular chaperones is the propensity to form aggregates very similar to the micellar aggregates. In this paper we show that alpha(s)-casein, abundant in mammalian milk, which has no well defined secondary and tertiary structure but exits in nature as a micellar aggregate, can prevent a variety of unrelated proteins/enzymes against thermal-, chemical-, or light-induced aggregation. It also prevents aggregation of its natural substrates, the whey proteins. alpha(s)-Casein interacts with partially unfolded proteins through its solvent-exposed hydrophobic surfaces. The absence of disulfide bridge or free thiol groups in its sequence plays important role in preventing thermal aggregation of whey proteins caused by thiol-disulfide interchange reactions. Our results indicate that alpha(s)-casein not only prevents the formation of huge insoluble aggregates but it can also inhibit accumulation of soluble aggregates of appreciable size. Unlike other molecular chaperones, this protein can solubilize hydrophobically aggregated proteins. This protein seems to have some characteristics of cold shock protein, and its chaperone-like activity increases with decrease of temperature.  相似文献   

11.
This review highlights the modern perception of anomalous folding of the prion protein and the role of chaperones therein. Special attention is paid to prion proteins from mammalian species, which are prone to amyloid-like prion diseases due to a unique aggregation pathway. Despite being a significantly popular current subject of investigations, the etiology, structure, and function of both normal and anomalous prion proteins still hold many mysteries. The most interesting of those are connected to the interaction with chaperone system, which is responsible for stabilizing protein structure and disrupting aggregates. In the case of prion proteins the following question is of the most importance — can chaperones influence different stages of the formation of pathological aggregates (these vary from intermediate oligomers to mature amyloid-like fibrils) and the whole transition from native prion protein to its amyloid-like fibril-enriched form? The existing inconsistencies and ambiguities in the observations made so far can be attributed to the fact that most of the investigations did not take into account the type and functional state of the chaperones. This review discusses in detail our previous works that have demonstrated fundamental differences between eukaryotic and prokaryotic chaperones in the action exerted on the amyloid-like transformation of the prion protein along with the dependence of the observed effects on the functional state of the chaperone.  相似文献   

12.
Influence of molecular and chemical chaperones on protein folding   总被引:7,自引:2,他引:5       下载免费PDF全文
Protein folding inside the cell involves the Participation of accessory components known as molecular chaperones. In addition to their active participation in the folding process, molecular chaperones serve as a type of ‘quality control system’, recognizing, retaining and targeting misfolded proteins for their eventual degradation. It is now known that a number of human diseases arise as a consequence of specific point mutations or deletions within genes encoding essential proteins. In many cases these mutations/deletions are not so sever as to totally destroy the biological activity of the particular gene product. Rather, the mutations often result in only subtle folding abnormalities which lead to the newly synthesized protein being retained at the endoplasmic reticulum by the actions of the cellylar quality control system. In this short review article we discuss our recent studies showing that the protein folding defect associated with the most common mutation in patients with cystic fibriosis can be overcome by a novel strategy. As shown in the paper by Brown et al in this issue (Brown et al 1996), a number of different low molecular weight compounds, all known to stabilize proteins in their native conformation, are effective in rescuing the processing defect of the mutant cystic fibrosis transmembrane conductance regulator protein. We then discuss how these same compounds, which we now call chemical chaperones, also may prove to be effective in correcting a number of other protein folding abnormalities which constitute the underlying basis of a large number of different human diseases.  相似文献   

13.
Nakamura T  Gu Z  Lipton SA 《Aging cell》2007,6(3):351-359
Glutamatergic hyperactivity, associated with Ca2+ influx and consequent production of nitric oxide (NO), is potentially involved in both normal brain aging and age-related neurodegenerative disorders. Many neurodegenerative diseases are characterized by conformational changes in proteins that result in their misfolding and aggregation. Normal protein degradation by the ubiquitin-proteasome system can prevent accumulation of aberrantly folded proteins. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. In particular, molecular chaperones - such as protein disulfide isomerase, glucose regulated protein 78, and heat shock proteins - can provide neuroprotection from misfolded proteins by facilitating proper folding and thus preventing aggregation. Here, we present evidence for the hypothesis that NO contributes to normal brain aging and degenerative conditions by S-nitrosylating specific chaperones that would otherwise prevent accumulation of misfolded proteins.  相似文献   

14.
蛋白质的折叠问题一直是生物学研究的前沿之一,蛋白质稳态平衡的破坏与衰老及很多神经退行性疾病的发病机理密切相关,而蛋白质的正确折叠与蛋白质稳态在很大程度上取决于分子伴侣参与构建的复杂网络。许多研究表明,抗体可以作为分子伴侣促进蛋白质的正确折叠,并阻止蛋白质的异常聚集,抗体所具有的严格底物特异性使其具备了治疗特定蛋白质折叠病、帮助包涵体复性等应用潜力。本文简要介绍了分子伴侣的研究进展,详细阐述了具有分子伴侣功能的抗体及单链抗体的研究进展,最后重点讨论了可抑制蛋白质聚集的抗体的研究近况。  相似文献   

15.
Chemical chaperones are small organic molecules which accumulate in a broad range of organisms in various tissues under different stress conditions and assist in the maintenance of a correct proteostasis under denaturating environments. The effect of chemical chaperones on protein folding and aggregation has been extensively studied and is generally considered to be mediated through non-specific interactions. However, the precise mechanism of action remains elusive. Protein self-assembly is a key event in both native and pathological states, ranging from microtubules and actin filaments formation to toxic amyloids appearance in degenerative disorders, such as Alzheimer''s and Parkinson''s diseases. Another pathological event, in which protein assembly cascade is a fundamental process, is the formation of virus particles. In the late stage of the virus life cycle, capsid proteins self-assemble into highly-ordered cores, which encapsulate the viral genome, consequently protect genome integrity and mediate infectivity. In this study, we examined the effect of different groups of chemical chaperones on viral capsid assembly in vitro, focusing on HIV-1 capsid protein as a system model. We found that while polyols and sugars markedly inhibited capsid assembly, methylamines dramatically enhanced the assembly rate. Moreover, chemical chaperones that inhibited capsid core formation, also stabilized capsid structure under thermal denaturation. Correspondingly, trimethylamine N-oxide, which facilitated formation of high-order assemblies, clearly destabilized capsid structure under similar conditions. In contrast to the prevailing hypothesis suggesting that chemical chaperones affect proteins through preferential exclusion, the observed dual effects imply that different chaperones modify capsid assembly and stability through different mechanisms. Furthermore, our results indicate a correlation between the folding state of capsid to its tendency to assemble into highly-ordered structures.  相似文献   

16.
As a large family of hydrolases, GTPases are widespread in cells and play the very important biological function of hydrolyzing GTP into GDP and inorganic phosphate through binding with it. GTPases are involved in cell cycle regulation, protein synthesis, and protein transportation. Chaperones can facilitate the folding or refolding of nascent peptides and denatured proteins to their native states. However, chaperones do not occur in the native structures in which they can perform their normal biological functions. In the current study, the chaperone activity of the conserved GTPases of Escherichia coli is tested by the chemical denaturation and chaperone-assisted renaturation of citrate synthase and α-glucosidase. The effects of ribosomes and nucleotides on the chaperone activity are also examined. Our data indicate that these conserved GTPases have chaperone properties, and may be ancestral protein folding factors that have appeared before dedicated chaperones.  相似文献   

17.
The role of molecular chaperones in human misfolding diseases   总被引:1,自引:0,他引:1  
Sarah A. Broadley 《FEBS letters》2009,583(16):2647-144
Human misfolding diseases arise when proteins adopt non-native conformations that endow them with a tendency to aggregate and form intra- and/or extra-cellular deposits. Molecular chaperones, such as Hsp70 and TCP-1 Ring Complex (TRiC)/chaperonin containing TCP-1 (CCT), have been implicated as potent modulators of misfolding disease. These chaperones suppress toxicity of disease proteins and modify early events in the aggregation process in a cooperative and sequential manner reminiscent of their functions in de novo protein folding. Further understanding of the role of Hsp70, TRiC, and other chaperones in misfolding disease is likely to provide important insight into basic pathomechanistic principles that could potentially be exploited for therapeutic purposes.  相似文献   

18.
Bacterial cells are frequently exposed to dramatic fluctuations in their environment, which cause perturbation in protein homeostasis and lead to protein misfolding. Bacteria have therefore evolved powerful quality control networks consisting of chaperones and proteases that cooperate to monitor the folding states of proteins and to remove misfolded conformers through either refolding or degradation. The levels of the quality control components are adjusted to the folding state of the cellular proteome through the induction of compartment specific stress responses. In addition, the activities of several quality control components are directly controlled by these stresses, allowing for fast activation. Severe stress can, however, overcome the protective function of the proteostasis network leading to the formation of protein aggregates, which are sequestered at the cell poles. Protein aggregates are either solubilized by AAA+ chaperones or eliminated through cell division, allowing for the generation of damage-free daughter cells.  相似文献   

19.
新生肽链折叠过程中容易出现错误折叠与聚沉,从而导致折叠病等病理现象. 分子伴侣具有辅助其他蛋白质正确折叠,保护蛋白质分子结构的功能.本文选用人肌肌酸激酶为靶蛋白,研究了肽基脯氨酰顺反异构酶人亲环素18(human cyclophilin 18,hCyp18)对人肌肌酸激酶去折叠的作用,发现hCyp18能够抑制人肌肌酸激酶在热变性与化学变性过程中的失活与构象变化,并抑制人肌肌酸激酶在化学变性过程中的聚沉,因此推断hCyp18具有针对人肌肌酸激酶的分子伴侣功能.本文同时研究了hCyp18与人肌肌酸激酶的结合作用,对hCyp18的作用机制进行了初步探讨.  相似文献   

20.
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号