首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biochemical events surrounding ischemia reperfusion injury in the acute setting are of great importance to furthering novel treatment options for myocardial infarction and cardiac complications of thoracic surgery. The ability of certain drugs to precondition the myocardium against ischemia reperfusion injury has led to multiple clinical trials, with little success. The isolated heart model allows acute observation of the functional effects of ischemia reperfusion injury in real time, including the effects of various pharmacological interventions administered at any time-point before or within the ischemia-reperfusion injury window. Since brief periods of ischemia can precondition the heart against ischemic injury, in situ aortic cannulation is performed to allow for functional assessment of non-preconditioned myocardium. A saline filled balloon is placed into the left ventricle to allow for real-time measurement of pressure generation. Ischemic injury is simulated by the cessation of perfusion buffer flow, followed by reperfusion. The duration of both ischemia and reperfusion can be modulated to examine biochemical events at any given time-point. Although the Langendorff isolated heart model does not allow for the consideration of systemic events affecting ischemia and reperfusion, it is an excellent model for the examination of acute functional and biochemical events within the window of ischemia reperfusion injury as well as the effect of pharmacological intervention on cardiac pre- and postconditioning. The goal of this protocol is to demonstrate how to perform in situ aortic cannulation and heart excision followed by ischemia/reperfusion injury in the Langendorff model.  相似文献   

2.
3.
Role of iodine in antioxidant defence in thyroid and breast disease   总被引:4,自引:0,他引:4  
The role played in thyroid hormonogenesis by iodide oxidation to iodine (organification) is well established. Iodine deficiency may produce conditions of oxidative stress with high TSH producing a level of H_2O_2, which because of lack of iodide is not being used to form thyroid hormones. The cytotoxic actions of excess iodide in thyroid cells may depend on the formation of free radicals and can be attributed to both necrotic and apoptotic mechanisms with necrosis predominating in goiter development and apoptosis during iodide induced involution. These cytotoxic effects appear to depend on the status of antioxidative enzymes and may only be evident in conditions of selenium deficiency where the activity of selenium containing antioxidative enzymes is impaired. Less compelling evidence exists of a role for iodide as an antioxidant in the breast. However the Japanese experience may indicate a protective effect against breast cancer for an iodine rich seaweed containing diet. Similarly thyroid autoimmunity may also be associated with improved prognosis. Whether this phenomenon is breast specific and its possible relationship to iodine or selenium status awaits resolution.  相似文献   

4.
Isolated porcine thyroid cells cultured in suspension in Eagle Minimum Essential Medium supplemented with calf serum (5-20%) reorganize to form vesicles, i.e. closed structures in which all cells have an inverted polarity as compared to that found in follicles: the apical membranes are bathed by the culture medium. Under these conditions, cells neither concentrate iodide nor respond to acute thyrotropin (TSH) stimulation. When embedded in collagen gel, these vesicles undergo polarity reversal to form follicles. We describe here the change in the orientation of cell polarity and the subsequent reappearance of specific thyroid functions. Six hr after embedding, membrane areas in contact with collagen fibers show basal characteristics. At this time, cells begin to concentrate iodide and to respond to acute TSH stimulation (iodide efflux and increased cAMP levels). Most cells form follicles 24 hr after embedding, but 48 hr are required for the transformation of all vesicles into follicles. This occurs without opening of the tight junctions. Iodide organification is detected 24 hr after embedding, when periodic acid-Schiff positive material, identified as thyroglobulin by immunofluorescence, accumulates in the lumen. Iodide concentration and organification, as well as response to TSH stimulation reach maximal levels after 3 days in the collagen matrix. After a 5-day culture in the collagen matrix in the absence of TSH, cell activity can be stimulated by chronic treatment with low hormone concentrations (10-100 microU/ml). As shown with thyroid cells grown in monolayer on permeable substrates (Chambard M., et al., 1983, J. Cell Biol. 96, 1172-1177), iodide uptake and cAMP-mediated TSH responses are expressed when the halogen and the hormone have direct access to the basal membrane. Organification, on the contrary, requires a closed apical compartment.  相似文献   

5.
Experiments were made on 56 white noninbred male rats with transitory coronary insufficiency (duration of myocardial ischemia 10, 40 and 120 min, the length of subsequent reperfusion 10 and 40 min). It was discovered that there were changes in the ultrastructure of cardiocytes and vessels of the microcirculatory bed both in the area of ischemia and reperfusion and in the distant heart regions, an increase in myocardial cell and microvessel lesions during postischemic reperfusion not only in the area of ischemia but also in distant zones. In addition, a reduction was noted in the degree of ischemic and reperfusion myocardial injury during the prophylactic use of myophedrine. The mechanisms of the protective action of myophedrine in acute transitory coronary insufficiency are discussed.  相似文献   

6.
Human pendrin (SCL26A4, PDS) is a 780 amino acid integral membrane protein with transport function. It acts as an electroneutral, sodium-independent anion exchanger for a wide range of anions, such as iodide, chloride, formate, bicarbonate, hydroxide and thiocyanate. Pendrin expression was originally described in the thyroid gland, kidney and inner ear. Accordingly, pendrin mutations with reduction or loss of transport function result in thyroid and inner ear abnormalities, manifested as syndromic (Pendred syndrome) and non-syndromic hearing loss with an enlarged vestibular aqueduct (ns-EVA). Pendred syndrome, the most common form of syndromic deafness, is an autosomal recessive disease characterized by sensorineural deafness due to inner ear malformations and a partial iodide organification defect that may lead to thyroid goiter. Later, it became evident that not only pendrin loss of function, but also up-regulation could participate in the pathogenesis of human diseases. Indeed, despite the absence of kidney dysfunction in Pendred syndrome patients, evidence exists that pendrin also plays a crucial role in this organ, with a potential involvement in the pathogenesis of hypertension. In addition, recent data underscore the role of pendrin in exacerbations of respiratory distresses including bronchial asthma and chronic obstructive pulmonary disease (COPD). Pendrin expression in other organs such as mammary gland, testis, placenta, endometrium and liver point to new, underscored pendrin functions that deserve to be further investigated.  相似文献   

7.
The source(s) of reactive partially reduced oxygen species associated with myocardial ischemia/reperfusion injury remain unclear and controversial. Myoglobin has not been viewed as a participant but is present in relatively high concentrations in heart muscle and, even under normal conditions, undergoes reactions that generate met (Fe3+) species and also superoxide, hydrogen peroxide, and other oxidants, albeit slowly. The degree to which the decrease in pH and the freeing of copper ions, as well as the variations in pO2 associated with ischemia and reperfusion increase the rates of such myoglobin reactions has been investigated. Solutions of extensively purified myoglobin from bovine heart in 50 mM sodium phosphate buffer were examined at 37 degrees C. Sufficiently marked rate increases were observed to indicate that reactions of myoglobin can indeed contribute substantially to the oxidant stress associated with ischemia/reperfusion injury in myocardial tissues. These findings provide additional targets for therapeutic interventions.  相似文献   

8.
The purpose of the present study was to demonstrate the contribution of pulmonary-generated reactive oxygen species (ROS) on cardiac dysfunction using a rat model of ischemia–reperfusion (IR) injury. Three groups of rats were subjected to regional IR injury in (i) lung, (ii) heart, (iii) lung + heart. A fourth (control) group of rats were instrumented using the same methods but without induction IR. Hemodynamic data were recorded in real time. Blood from the proximal aorta was sampled during baseline, ischemia, and reperfusion, mixed with α-phenyl-N-tert-butylnitrone (PBN) for measuring ROS by electron paramagnetic resonance spectrometry. Data were analyzed by a two-way analysis of variance. The results showed that the lung IR generated an increased burst of ROS that resulted in significant cardiac dysfunction, including hypotension and ECG changes. The results indicated that generation of ROS as a result of acute IR lung injury may be sufficiently large enough to cause direct cardiac dysfunction that is independent of injury caused to the myocardium as a result of regional myocardial IR injury alone.  相似文献   

9.
In an attempt to resolve the issue of whether there is a loss of fatty acid binding protein (H-FABP) from heart during ischemia and reperfusion, and to further examine the role of this protein in ischemic-reperfusion injury, the amount of H-FABP of heart was monitored during ischemia and reperfusion. Excellent correlation was obtained between the loss of H-FABP from heart and its appearance in the perfusate buffer when examined by Western blot using the specific antibody to H-FABP. Further quantitation was achieved by densitometric scanning of the Western blot and rocket electrophoresis. Maximum release of H-FABP was observed within 20 min of reperfusion, the total release being 10% of the H-FABP content of the heart. Mepacrine, a membrane stabilizer and a phospholipase inhibitor, reduced the release of H-FABP from the heart and prevented the accumulation of nonesterified fatty acids in the tissue during ischemia and reperfusion. In view of the established role of H-FABP in the preservation of membrane phospholipids by either scavenging free radicals during ischemia and reperfusion or by modulating the enzymes of phospholipid synthesis, it seems likely that the loss of H-FABP may have some contribution towards the ischemic-reperfusion injury.  相似文献   

10.
In a preceding report, we showed evidence that thyrotropin (TSH) stimulates Ca2+ efflux from mouse thyroid gland and that TSH stimulation of Ca2+ efflux is inhibited by acute administration of excess iodide to mice fed a low iodine diet (Hashizume et al., 1984). The observations suggested that iodide inhibits Ca2+ efflux through an inhibition of TSH-sensitive adenylate cyclase activity. We found further, that iodide inhibits dibutyryl cyclic AMP (DBC)-stimulated Ca2+ efflux. The results suggested that iodide influences the step subsequent to the generation of cyclic AMP. In this report, we studied whether iodide can inhibit Ca2+ efflux by a mechanism which is distinct from adenylate cyclase inhibition. The acute administration of excess iodide to mice fed a regular diet did not decrease the basal Ca2+ efflux rate in the thyroid. TSH-induced stimulation of Ca2+ efflux in thyroids obtained from regular diet-treated mice was not modified by iodide administration. Iodide injection to mice fed a low iodide diet, however, decreased the basal Ca2+ efflux rate though the content of cyclic AMP in the thyroids was not altered by this treatment. The decreased-Ca2+ efflux rate induced by iodide in the low iodine diet-treated thyroids was not modified by TSH in vitro. The results indicate that an acute administration of excess iodide in thyroid inhibits Ca2+ efflux not only by an inhibition of adenylate cyclase but also by an inhibitory action which is distinct from the adenylate cyclase inhibiting action of iodide.  相似文献   

11.
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart.  相似文献   

12.
Reactive oxygen species (ROS) are considered an important factor in ischemia/reperfusion injury to cardiac myocites. Mitochondrial respiration is an important source of ROS generation and hence a potential contributor to cardiac reperfusion injury. Appropriate treatment strategy could be particularly useful to limit this ROS generation and associated mitochondrial dysfunction. In the present study, we examined the effect of lowering the oxygen tension, at the onset of the reperfusion, on various parameters of mitochondrial bioenergetics in rat heart tissue. After isolation of mitochondria from control, ischemic, normoxic and hypoxic reperfused rat heart, various bioenergetic parameters were evaluated such as rates of mitochondrial oxygen consumption, complex I and complex III activity, H2O2 production and in addition, the degree of lipid peroxidation, cardiolipin content and cardiolipin oxidation. We found that normoxic reperfusion significantly altered all these mitochondrial parameters, while hypoxic reperfusion had a protective effect attenuating these alterations. This effect appears to be due, at least in part, to a reduction of mitochondrial ROS generation with subsequent preservation of cardiolipin integrity, protection of mitochondrial function and improvement of post-ischemic hemodynamic function of the heart.  相似文献   

13.
The effect of a high bromide intake on the kinetics of iodide uptake and elimination in the thyroid and skin of adult male rats was studied. In rats fed a diet with sufficient iodine supply (>25 μg I/d), the iodide accumulation in the skin predominated during the first hours after 131I -iodide application. From this organ, radioiodide was gradually transferred into the thyroid. A high bromide intake (>150 mg Br/d) in these animals led to a marked decrease in iodide accumulation, especially by the thyroid, because of an increase in iodide elimination both from the thyroid and from the skin. In rats kept under the conditions of iodine deficiency (<1 μ I/d), the iodide accumulation in the thyroid, but not in the skin, was markedly increased as a result of a thyrotropic stimulation. The effect of a high bromide intake (>100 mg Br/d) in these animals was particularly pronounced because the rates of iodide elimination were most accelerated both from their thyroid and from their skin. Presented in part at the 20th Workshop on Macro and Trace Elements held in Jena (Germany) on December 1–2, 2000.  相似文献   

14.
The sodium/iodide symporter mediates active iodide transport in both healthy and cancerous thyroid tissue. By exploiting this activity, radioiodide has been used for decades with considerable success in the detection and treatment of thyroid cancer. Here we show that a specialized form of the sodium/iodide symporter in the mammary gland mediates active iodide transport in healthy lactating (but not in nonlactating) mammary gland and in mammary tumors. In addition to characterizing the hormonal regulation of the mammary gland sodium/iodide symporter, we demonstrate by scintigraphy that mammary adenocarcinomas in transgenic mice bearing Ras or Neu oncogenes actively accumulate iodide by this symporter in vivo. Moreover, more than 80% of the human breast cancer samples we analyzed by immunohistochemistry expressed the symporter, compared with none of the normal (nonlactating) samples from reductive mammoplasties. These results indicate that the mammary gland sodium/iodide symporter may be an essential breast cancer marker and that radioiodide should be studied as a possible option in the diagnosis and treatment of breast cancer.  相似文献   

15.
This article summarizes the evidence that endogenously produced and exogenously administered melatonin reduces the degree of tissue damage and limits the biobehavioral deficits associated with experimental models of ischemia/reperfusion injury in the brain (i.e., stroke). Melatonin's efficacy in curtailing neural damage under conditions of transitory interruption of the blood supply to the brain has been documented in models of both focal and global ischemia. In these studies many indices have been shown to be improved as a consequence of melatonin treatment. For example, when given at the time of ischemia or reperfusion onset, melatonin reduces neurophysiological deficits, infarct volume, the degree of neural edema, lipid peroxidation, protein carbonyls, DNA damage, neuron and glial loss, and death of the animals. Melatonin's protective actions against these adverse changes are believed to stem from its direct free radical scavenging and indirect antioxidant activities, possibly from its ability to limit free radical generation at the mitochondrial level and because of yet-undefined functions. Considering its high efficacy in overcoming much of the damage associated with ischemia/reperfusion injury, not only in the brain but in other organs as well, its use in clinical trials for the purpose of improving stroke outcome should be seriously considered.  相似文献   

16.
The current therapeutic strategy for the management of acute myocardial infarction (AMI) is to return blood flow into the occluded coronary artery of the heart, a process defined as reperfusion. However, reperfusion itself can increase mortality rates in AMI patients because of cardiac tissue damage and dysfunction, which is termed ‘ischaemia/reperfusion (I/R) injury’. Mitochondria play an important role in myocardial I/R injury as disturbance of mitochondrial dynamics, especially excessive mitochondrial fission, is a predominant cause of cardiac dysfunction. Therefore, pharmacological intervention and therapeutic strategies which modulate the mitochondrial dynamics balance during I/R injury could exert great beneficial effects to the I/R heart. This review comprehensively summarizes and discusses the effects of mitochondrial fission inhibitors as well as mitochondrial fusion promoters on cardiac and mitochondrial function during myocardial I/R injury. The comparison of the effects of both compounds given at different time‐points during the course of I/R injury (i.e. prior to ischaemia, during ischaemia and at the reperfusion period) are also summarized and discussed. Finally, this review also details important information which may contribute to clinical practices using these drugs to improve the quality of life in AMI patients.  相似文献   

17.
Graves' disease presented as painful goiter   总被引:1,自引:0,他引:1  
Chao CS  Lin SY  Sheu WH 《Hormone research》2002,57(1-2):53-56
Pain in the thyroid gland is rarely present in Graves' disease. We describe a 32-year-old female hyperthyroid Graves' disease patient with an initial manifestation of painful goiter. On physical examination, the thyroid gland was diffusely enlarged and tender. The laboratory examinations showed high serum thyroid hormone and low thyrotropin values. Serum inflammatory markers, including C-reactive protein and erythrocyte sedimentation rate, were elevated. Thyroid ultrasound revealed multiple focal hypoechoic areas. All these findings gave an initial impression of an acute inflammatory and destructive process in the thyroid gland. However, subsequent thyroid scintigraphy demonstrated a diffuse radioactive iodide uptake pattern with positive serum thyrotropin receptor antibodies. Fine-needle aspiration cytology showed only the presence of lymphocytes. She was diagnosed as having Graves' disease and was treated with propylthiouracil, and prednisolone was given for neck pain. Within a few days, the thyroid tenderness dramatically improved, and the erythrocyte sedimentation rate progressively normalized. However, follow-up thyroid function tests still showed high serum thyroid hormone levels. The possible etiologies of a painful thyroid gland in Graves' disease will be discussed.  相似文献   

18.
Experimental acute toxic hepatitis causes functional reconstruction of the thyroid gland accompanied by intensified levels of total iodine and its hormonal compounds in blood. In most of non-thyroid tissues a decrease in the total and hormonal iodine content is revealed, but in kidneys these indices are considerably higher. The level of the nonhormonal iodine compounds in blood and tissues under study does not essentially vary and only in the liver, heart and lungs the expressed lowering of inorganic iodides is observed.  相似文献   

19.
The regulation of thyroid metabolism by iodide involves numerous inhibitory effects. However, in unstimulated dog thyroid slices, a small inconstant stimulatory effect of iodide on H(2)O(2) generation is observed. The only other stimulatory effect reported with iodide is on [1-(14)C]glucose oxidation, i.e., on the pentose phosphate pathway. Because we have recently demonstrated that the pentose phosphate pathway is controlled by H(2)O(2) generation, we study here the effect of iodide on basal H(2)O(2) generation in thyroid slices from several species. Our data show that in sheep, pig, bovine, and to a lesser extent dog thyroid, iodide had a stimulatory effect on H(2)O(2) generation. In horse and human thyroid, an inconstant effect was observed. We demonstrate in dogs that the stimulatory effect of iodide is greater in thyroids deprived of iodide, raising the possibility that differences in thyroid iodide pool may account, at least in part, for the differences between the different species studied. This represents the first demonstration of an activation by iodide of a specialized thyroid function. In comparison with conditions in which an inhibitory effect of iodide on H(2)O(2) generation is observed, the stimulating effect was observed for lower concentrations and for a shorter incubation time with iodide. Such a dual control of H(2)O(2) generation by iodide has the physiological interest of promoting an efficient oxidation of iodide when the substrate is provided to a deficient gland and of avoiding excessive oxidation of iodide and thus synthesis of thyroid hormones when it is in excess. The activation of H(2)O(2) generation may also explain the well described toxic effect of acute administration of iodide on iodine-depleted thyroids.  相似文献   

20.
We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) pretreatment protected the rat heart from ischemia-reperfusion injury. This effect was monitored by assaying for lactate dehydrogenase (LDH), an enzyme whose release correlates with loss of cell membrane integrity. Intact hearts removed from rats pretreated with TNF-released significantly lower amounts of LDH compared to control hearts after 20 min. of total global ischemia followed by reperfusion. Hearts from TNF-alpha-pretreated animals contained higher levels of manganous superoxide dismutase (MnSOD) mRNA than hearts from untreated rats. Because oxygen free radicals have been implicated as a major cause of reperfusion damage and the function of MnSOD is to detoxify superoxide anions in the mitochondria, a possible protective mechanism for TNF-alpha may be to induce expression of MnSOD in the heart and thus confer resistance to oxygen free radicals generated during reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号