共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glucocorticoid regulates angiotensin II receptor (ATR) expression via activating glucocorticoid receptors and binding to glucocorticoid response elements. The regulation of ATR by glucocorticoids in the context of myocardial injury from ischemia/reperfusion (I/R) is yet to be elucidated. The present study determined the role of ATR in glucocorticoid-induced cardiac protection. Adult male rats were administered once a day i.p. 1 mg/kg/day dexamethasone or dexamethasone plus 10 mg/kg/day RU486 for 5 days. Hearts were then isolated and subjected to I/R injury in a Langendorff preparation. Dexamethasone treatment significantly decreased I/R injury and improved post-ischemic recovery of cardiac function. Dexamethasone increased glucocorticoid receptor binding to glucocorticoid response elements at AT1aR and AT2R promoters, resulting in a significant increase in expression of AT1R protein but a decrease in AT2R expression in the heart. In addition, dexamethasone treatment significantly increased PKCε expression and p-PKCε protein abundance. These dexamethasone-mediated effects were blocked by RU486. More importantly, blockade of AT1R and AT2R with losartan and PD123319 abrogated dexamethasone-induced protection of the heart from I/R injury. The results indicate that glucocorticoid promotes a cardioprotective phenotype associated with the upregulation of AT1R and PKCε and downregulation of AT2R in the heart. 相似文献
3.
Kazuto Nakamura Soichi Sano José J. Fuster Ryosuke Kikuchi Ippei Shimizu Kousei Ohshima Yasufumi Katanasaka Noriyuki Ouchi Kenneth Walsh 《The Journal of biological chemistry》2016,291(6):2566-2575
Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling. 相似文献
4.
Bo Zhang Daniel Cowden Fan Zhang Jue Yuan Sandra Siedlak Mai Abouelsaad Liang Zeng Xuefeng Zhou John O'Toole Alvin S. Das Diane Kofskey Miriam Warren Zehua Bian Yuqi Cui Tao Tan Adam Kresak Robert E. Wyza Robert B. Petersen Gong-Xian Wang Qingzhong Kong Xinglong Wang John Sedor Xiongwei Zhu Hua Zhu Wen-Quan Zou 《PloS one》2015,10(9)
The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways. 相似文献
5.
6.
Barbara Andria Adele Bracco Chiara Attanasio Sigismondo Castaldo Maria Grazia Cerrito Santolo Cozzolino Daniele Di Napoli Roberto Giovannoni Antonio Mancini Antonino Musumeci Ernesto Mezza Mario Nasti Vincenzo Scuderi Stefania Staibano Marialuisa Lavitrano Leo E. Otterbein Fulvio Calise 《PloS one》2013,8(7)
Ischemia reperfusion injury (IRI) in organ transplantation remains a serious and unsolved problem. Organs that undergo significant damage during IRI, function less well immediately after reperfusion and tend to have more problems at later times when rejection can occur. Biliverdin has emerged as an agent that potently suppress IRI in rodent models. Since the use of biliverdin is being developed as a potential therapeutic modality for humans, we tested the efficacy for its effects on IRI of the liver in swine, an accepted and relevant pre-clinical animal model. Administration of biliverdin resulted in rapid appearance of bilirubin in the serum and significantly suppressed IRI-induced liver dysfunction as measured by multiple parameters including urea and ammonia clearance, neutrophil infiltration and tissue histopathology including hepatocyte cell death. Taken together, our findings, in a large animal model, provide strong support for the continued evaluation of biliverdin as a potential therapeutic in the clinical setting of transplantation of the liver and perhaps other organs. 相似文献
7.
Bo Zhang Daniel Cowden Fan Zhang Jue Yuan Sandra Siedlak Mai Abouelsaad Liang Zeng Xuefeng Zhou John O'Toole Alvin S. Das Diane Kofskey Miriam Warren Zehua Bian Yuqi Cui Tao Tan Adam Kresak Robert E Wyza Robert B. Petersen Gong-Xian Wang Qingzhong Kong Xinglong Wang John Sedor Xiongwei Zhu Hua Zhu Wen-Quan Zou 《PloS one》2015,10(10)
8.
The neuroprotective effects of superoxide dismutase (SOD) against hypoxia/reperfusion (I/R) injury and of humanin (HN) against
toxicity by familial amyotrophic lateral sclerosis (ALS)-related mutant SOD led us to hypothesize that HN might have a role
to increase the activity of SOD, which might be involved in the protective effects of HN on neuron against Alzheimer’s disease-unrelated
neurotoxicities. In the present study, we found that 4 h ischemia and 24 h reperfusion induced a significant increase in lactate
dehydrogenase (LDH) release, malondialdehyde (MDA) formation and the number of karyopyknotic nuclei (4′,6-diamidino-2-phenylindole
dihydrochloride nuclear dyeing) and a decrease in the number of Calcein-AM-positive living cells and cell viability. Pretreatment
of the cells with HN led to a significant decrease in LDH release, MDA formation and the number of karyopyknotic nuclei, and
an increase in the number of Calcein-AM-positive living cells and cell viability in neurons treated with I/R. We also found
a significant decrease in SOD activity in neurons treated with I/R only, while pre-treatment with HN before I/R induced a
significant increase in the activity of SOD as compared with the I/R group. Our findings implied that HN protects cortical
neurons from I/R injury by the increased SOD activity and that the protective effect of HN on neurons against I/R is concentration-dependent. 相似文献
9.
Hepatic ischemia/reperfusion (I/R) injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation. 相似文献
10.
Peng Zhang James C. Weaver Gang Chen Julia Beretov Tatsuya Atsumi Miao Qi Ravinay Bhindi Jian C. Qi Michele C. Madigan Bill Giannakopoulos Steven A. Krilis 《PloS one》2016,11(3)
Reperfusion after a period of ischemia results in reperfusion injury (IRI) which involves activation of the inflammatory cascade. In cardiac IRI, IgM natural antibodies (NAb) play a prominent role through binding to altered neoepitopes expressed on damaged cells. Beta 2 Glycoprotein I (β2GPI) is a plasma protein that binds to neoepitopes on damaged cells including anionic phospholipids through its highly conserved Domain V. Domain I of β2GPI binds circulating IgM NAbs and may provide a link between the innate immune system, IgM NAb binding and cardiac IRI. This study was undertaken to investigate the role of Β2GPI and its Domain V in cardiac IRI using wild-type (WT), Rag-1 -/- and β2GPI deficient mice. Compared with control, treatment with Domain V prior to cardiac IRI prevented binding of endogenous β2GPI to post-ischemic myocardium and resulted in smaller myocardial infarction size in both WT and β2GPI deficient mice. Domain V treatment in WT mice also resulted in less neutrophil infiltration, less apoptosis and improved ejection fraction at 24 h. Rag-1 -/- antibody deficient mice reconstituted with IgM NAbs confirmed that Domain V prevented IgM NAb induced cardiac IRI. Domain V remained equally effective when delivered at the time of reperfusion which has therapeutic clinical relevance.Based upon this study Domain V may function as a universal inhibitor of IgM NAb binding in the setting of cardiac IRI, which offers promise as a new therapeutic strategy in the treatment of cardiac IRI. 相似文献
11.
Asiya Parvin A Raj Pranap A Shalini U Ajay Devendran John E. Baker Anuradha Dhanasekaran 《PloS one》2014,9(9)
Hypoxia/Reoxygenation (H/R) cardiac injury is of great importance in understanding Myocardial Infarctions, which affect a major part of the working population causing debilitating side effects and often-premature mortality. H/R injury primarily consists of apoptotic and necrotic death of cardiomyocytes due to a compromise in the integrity of the mitochondrial membrane. Major factors associated in the deregulation of the membrane include fluctuating reactive oxygen species (ROS), deregulation of mitochondrial permeability transport pore (MPTP), uncontrolled calcium (Ca2+) fluxes, and abnormal caspase-3 activity. Erythropoietin (EPO) is strongly inferred to be cardioprotective and acts by inhibiting the above-mentioned processes. Surprisingly, the underlying mechanism of EPO''s action and H/R injury is yet to be fully investigated and elucidated. This study examined whether EPO maintains Ca2+ homeostasis and the mitochondrial membrane potential (ΔΨm) in cardiomyocytes when subjected to H/R injury and further explored the underlying mechanisms involved. H9C2 cells were exposed to different concentrations of EPO post-H/R, and 20 U/ml EPO was found to significantly increase cell viability by inhibiting the intracellular production of ROS and caspase-3 activity. The protective effect of EPO was abolished when H/R-induced H9C2 cells were treated with Wortmannin, an inhibitor of Akt, suggesting the mechanism of action through the activation Akt, a major survival pathway. 相似文献
12.
Galina Zeltcer Eduard Berensritin Amram Samuni Mordechai Chevion 《Free radical research》1997,27(6):627-636
The effects of Cu(II) and the stable nitroxide radical 4-OH-2, 2, 6, 6-tetramethyl-piperidine-1-oxyl (TPL) on reperfusion injury following global myocardial ischemia have been studied using the isolated rat heart model in the Langendorff configuration. Hearts were equilibrated with Krebs-Henseleit buffer (KH-buffer) for 10 min and subjected to 18 min of normothermic global ischemia. After 20 min reperfusion, hemodynamic parameters recovered as follows: ventricular developed pressure (77%), dP/dt (71%) and -dP/dt (80%), heart rate (91%), and work index (70%). End-diastolic pressure was 16 mm Hg. When 10μM Cu-nitrilotriacetate or Cu-(histidine)2 was included in the perfusate before, during, and following ischemia, the heart injury was more extensive and the work index only recovered to 17% of the preischemic value. The inclusion of 100μM TPL during reperfusion abolished the copper-induced sensi-tization. In the absence of copper, TPL did not provide any protection against ischemia-reperfusion damage to the heart. The inclusion of 100μM 1, 4-dihydroxy-2, 2, 6, 6-tetramethylpiperidine (TPL-H) during reperfusion, partially abolished the copper-induced sensitization. Since conversion between TPL and TPL-H takes place, the fact that both forms provide protection can increase their protective efficacy. 相似文献
13.
Zhu Jiangtao Wu Di Zhao Chenyu Luo Man Hamdy Ronald C. Chua Balvin H. L. Xu Xingshun Miao Zhigang 《Neurochemical research》2017,42(10):2949-2957
Neurochemical Research - Previous studies have demonstrated that plasma resistin levels were increased in patients with acute ischemic stroke. However, the role of resistin after ischemic brain... 相似文献
14.
Liangyi Zhou Guoyao Zang Guangfeng Zhang Hansong Wang Xusheng Zhang Nathan Johnston Weiping Min Patrick Luke Anthony Jevnikar Aaron Haig Xiufen Zheng 《PloS one》2013,8(11)
Ischemia reperfusion (I/R) injury is an unavoidable event occurring during heart transplantation, leading to graft failures and lower long-term survival rate of the recipient. Several studies have demonstrated that microRNAs (miRNAs) are vital regulators of signalling pathways involved in I/R injury. The present study aims to quantify the altered expression levels of miRNA and mRNA upon I/R injury in a mouse heart transplantation model, and to investigate whether these miRNA can regulate genes involved in I/R injury. We performed heterotopic heart transplantation on mouse models to generate heart tissue samples with I/R and non-I/R (control). The expression levels of miRNAs as well as genes were measured in heart grafts by microarray and real time RT-PCR. miRNA alteration in cardiomyocytes exposed to hypoxia was also detected by qRT-PCR. We observed significant alterations in miRNA and gene expression profile after I/R injury. There were 39 miRNAs significantly downregulated and 20 upregulated up to 1.5 fold in heart grafts with I/R injury compared with the grafts without I/R. 48 genes were observed with 3 fold change and p<0.05 and 18 signalling pathways were enriched using Keggs pathway library. Additionally, hypoxia/reperfusion induced primary cardiomyocyte apoptosis and altered miRNA expression profiles. In conclusion, this is the first report on miRNA expression profile for heart transplantation associated with I/R injury. These findings provide us with an insight into the role of miRNA in I/R injury in heart transplantation. 相似文献
15.
16.
Jianhua Rao Jianjie Qin Xiaofeng Qian Ling Lu Ping Wang Zhengshan Wu Yuan Zhai Feng Zhang Guoqiang Li Xuehao Wang 《PloS one》2013,8(6)
Background
Low-dose lipopolysaccharide (LPS) preconditioning-induced liver protection has been demonstrated during ischemia-reperfusion injury (IRI) in several organs but has not been sufficiently elucidated underlying causal mechanism. This study investigated the role of low-dose LPS preconditioning on ATF4-CHOP pathway as well as the effects of the pathway on tissue injury and inflammation in a mouse model of liver partial-warm IRI.Methods
LPS (100 µg/kg/d) was injected intraperitoneally two days before ischemia. Hepatic injury was evaluated based on serum alanine aminotransferase levels, histopathology, and caspase-3 activity. The ATF4-CHOP pathway and its related apoptotic molecules were investigated after reperfusion. The role of LPS preconditioning on apoptosis and ATF4-CHOP pathway was examined in vitro. Moreover, the effects of the ATF4-CHOP pathway on apoptosis, Caspase-12, and Caspase-3 were determined with ATF4 small interfering RNA (siRNA). Inflammatory cytokine expression was also checked after reperfusion. Inflammatory cytokines and related signaling pathways were analyzed in vitro in macrophages treated by LPS preconditioning or ATF4 siRNA.Results
LPS preconditioning significantly attenuated liver injury after IRI. As demonstrated by in vitro experiments, LPS preconditioning significantly reduced the upregulation of the ATF4-CHOP pathway and inhibited Caspase-12 and Caspase-3 activation after IRI. Later experiments showed that ATF4 knockdown significantly suppressed CHOP, cleaved caspase-12 and caspase-3 expression, as well as inhibited hepatocellular apoptosis. In addition, in mice pretreated with LPS, TNF-α and IL-6 were inhibited after reperfusion, whereas IL-10 was upregulated. Similarly, low-dose LPS significantly inhibited TNF-α, IL-6, ATF4-CHOP pathway, NF-κB pathway, and ERK1/2 in high-dose LPS-stimulated macrophages, whereas IL-10 and cytokine signaling (SOCS)-3 suppressor were induced. Importantly, ATF4 siRNA is consistent with results of LPS preconditioning in macrophages.Conclusions
This work is the first time to provide evidence for LPS preconditioning protects hepatocytes from IRI through inhibiting ATF4-CHOP pathway, which may be critical to reducing related apoptosis molecules and modulating innate inflammation. 相似文献17.
Ismayil Ahmet Edward Spangler Barbara Shukitt-Hale Magdalena Juhaszova Steven J. Sollott James A. Joseph Donald K. Ingram Mark Talan 《PloS one》2009,4(6)
Objectives
to assess the cardioprotective properties of a blueberry enriched diet (BD).Background
Reactive oxygen species (ROS) play a major role in ischemia-related myocardial injury. The attempts to use synthetic antioxidants to block the detrimental effects of ROS have produced mixed or negative results precipitating the interest in natural products. Blueberries are readily available product with the highest antioxidant capacity among fruits and vegetables.Methods and Results
Following 3-mo of BD or a regular control diet (CD), the threshold for mitochondrial permeability transition (tMPT) was measured in isolated cardiomyocytes obtained from young male Fischer-344 rats. Compared to CD, BD resulted in a 24% increase (p<0.001) of ROS indexed tMPT. The remaining animals were subjected to a permanent ligation of the left descending coronary artery. 24 hrs later resulting myocardial infarction (MI) in rats on BD was 22% less than in CD rats (p<0.01). Significantly less TUNEL(+) cardiomyocytes (2% vs 9%) and 40% less inflammation cells were observed in the myocardial area at risk of BD compared to CD rats (p<0.01). In the subgroup of rats, after coronary ligation the original diet was either continued or switched to the opposite one, and cardiac remodeling and MI expansion were followed by serial echocardiography for 10 weeks. Measurements suggested that continuation of BD or its withdrawal after MI attenuated or accelerated rates of post MI cardiac remodeling and MI expansion.Conclusion
A blueberry-enriched diet protected the myocardium from induced ischemic damage and demonstrated the potential to attenuate the development of post MI chronic heart failure. 相似文献18.
《Free radical research》2013,47(5):361-367
MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one) is a newly developed antioxidant which has been shown to reduce brain edema in cerebral ischemia through inhibition of the lipoxygenase pathway of arachidonic acid. However, its effect on myocardial reperfusion injury after prolonged ischemia has not yet been demonstrated. We compared the mode of the effect of MCI-186 and recombinant human CuZn superoxide dismutase (rh-SOD) in isolated perfused rat hearts subjected to 60-min ischemia followed by 60-min reperfusion. Left ventricular developed pressure (LVDP), necrotic area and the release of creatine phosphokinase (CPK) and endogenous CuZn superoxide dismutase (endoge-SOD) were measured to evaluate myocardial damage. The decrease in left coronary flow (CBF) was measured as an index of the damage of left coronary circulation. MCI-186 (17.5 mg/L) was perfused for 10 min in the MCI group and rh-SOD (70 mg/L) was perfused during the reperfusion period in the SOD group starting 5 min prior to reperfusion. The release patterns of CPK and endoge-SOD were analyzed to elucidate the difference in the mode of protection of MCI-186 and rh-SOD. The LVDP remained higher in both MCI and SOD groups than that of control (76 ± 1, 77 ± 2 and 69 ± 1% of preischemic value, respectively). The necrotic area was significantly attenuated in both MCI and SOD groups compared with that in the control group (16 ± 1,14 ± 1 and 32 ± 170, respectively, p<0.05). Total CPK release was lower in both MCI and SOD groups thfn in the control (78 ± 7, 100 ± 2 and 116 ± 4 × 103 units/g myocardium respectively). The decrease in CPK release was more marked in the MCI group than that in the SOD group (p<0.05). The reduction in CBF was significantly attenuated by the treatment with rh-SOD or MCI-186, but the effect was much higher in the SOD group than in the MCI group (69 ± 5, 58 ± 2, and 48 ± 2% in SOD, MCI and control groups, respectively). The release pattern of endoge-SOD was identical to that of CPK and thus this did not distinguish the mode of effect of MCI-186 from that of rh-SOD. These results indicate that MCI-186 reduces reperfusion injury in isolated perfused hearts with prolonged ischemia and the effect is more closely related to the reduction of myocyte damage than the preservation of the coronary circulation. 相似文献
19.
20.
Aysha Samad Andrew James James Wong Parini Mankad John Whitehouse Waseema Patel Marta Alves-Simoes Ajith K. Siriwardena Jason I. E. Bruce 《The Journal of biological chemistry》2014,289(34):23582-23595
Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, . These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis. LY294002相似文献