首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The type IIs restriction enzyme BfiI recognizes the non-palindromic nucleotide sequence 5'-ACTGGG-3' and cleaves complementary DNA strands 5/4 nucleotides downstream of the recognition sequence. The genes coding for the BfiI restriction-modification (R-M) system were cloned/sequenced and biochemical characterization of BfiI restriction enzyme was performed. The BfiI R-M system contained three proteins: two N4-methylcytosine methyltransferases and a restriction enzyme. Sequencing of bisulfite-treated methylated DNA indicated that each methyltransferase modifies cytosines on opposite strands of the recognition sequence. The N-terminal part of the BfiI restriction enzyme amino acid sequence revealed intriguing similarities to an EDTA-resistant nuclease of Salmonella typhimurium. Biochemical analyses demonstrated that BfiI, like the nuclease of S. typhimurium, cleaves DNA in the absence of Mg(2+) ions and hydrolyzes an artificial substrate bis(p-nitrophenyl) phosphate. However, unlike the nonspecific S. typhimurium nuclease, BfiI restriction enzyme cleaves DNA specifically. We propose that the DNA-binding specificity of BfiI stems from the C-terminal part of the protein. The catalytic N-terminal subdomain of BfiI radically differs from that of type II restriction enzymes and is presumably similar to the EDTA-resistant nonspecific nuclease of S. typhimurium; therefore, BfiI did not require metal ions for catalysis. We suggest that BfiI represents a novel subclass of type IIs restriction enzymes that differs from the archetypal FokI endonuclease by the fold of its cleavage domain, the domain location, and reaction mechanism.  相似文献   

4.
The BfiI endonuclease cleaves DNA at fixed positions downstream of an asymmetric sequence. Unlike other restriction enzymes, it functions without metal ions. The N-terminal half of BfiI is similar to Nuc, an EDTA-resistant nuclease from Salmonella typhimurium that belongs to the phosphoplipase D superfamily. Nuc is a dimer with one active site at its subunit interface, as is BfiI, but it cuts DNA non-specifically. BfiI was cleaved by thermolysin into an N-terminal domain, which forms a dimer with non-specific nuclease activity, and a C-terminal domain, which lacks catalytic activity but binds specifically to the recognition sequence as a monomer. On denaturation with guanidinium, BfiI underwent two unfolding transitions: one at a relatively low concentration of guanidinium, to a dimeric non-specific nuclease; a second at a higher concentration, to an inactive monomer. The isolated C-terminal domain unfolded at the first (relatively low) concentration, the isolated N-terminal at the second. Hence, BfiI consists of two physically separate domains, with catalytic and dimerisation functions in the N terminus and DNA recognition functions in the C terminus. It is the first example of a restriction enzyme generated by the evolutionary fusion of a DNA recognition domain to a phosphodiesterase from the phospholipase D superfamily. BfiI may consist of three structural units: a stable central core with the active site, made from two copies of the N-terminal domain, flanked by relatively unstable C-terminal domains, that each bind a copy of the recognition sequence.  相似文献   

5.
BfiI is a novel type IIs restriction endonuclease that, unlike all other restriction enzymes characterised to date, cleaves DNA in the absence of Mg(2+). The amino acid sequence of the N-terminal part of BfiI has some similarities to Nuc of Salmonella typhimurium, an EDTA-resistant nuclease akin to phospholipase D. The dimeric form of Nuc contains a single active site composed of residues from both subunits. To examine the roles of the amino acid residues of BfiI that align with the catalytic residues in Nuc, a set of alanine replacement mutants was generated by site-directed mutagenesis. The mutationally altered forms of BfiI were all catalytically inactive but were still able to bind DNA specifically. The active site of BfiI is thus likely to be similar to that of Nuc. BfiI was also found by gel-filtration to be a dimer in solution. Both gel-shift and pull-down assays indicated that the dimeric form of BfiI binds two copies of its recognition sequence. In reactions on plasmids with either one or two copies of its recognition sequence, BfiI cleaved the DNA with two sites more rapidly than that with one site. Yet, when bound to two copies of its recognition sequence, the BfiI dimer cleaved only one phosphodiester bond at a time. The dimer thus seems to contain two DNA-binding domains but only one active site.  相似文献   

6.
Bacterial restriction endonuclease EcoRII requires two recognition sites to cleave DNA. Proteolysis of EcoRII revealed the existence of two stable domains, EcoRII-N and EcoRII-C. Reduction of the enzyme to its C-terminal domain, EcoRII-C, unleashed the enzyme activity; this truncated form no longer needed two recognition sites and cleaved DNA much more efficiently than EcoRII wild-type. The crystal structure of EcoRII showed that probably the N-terminal domain sterically occludes the catalytic site, thus apparently controlling the cleavage activity. Based on these data, EcoRII was the first restriction endonuclease for which an autoinhibition mechanism as regulatory strategy was proposed. In this study, we probed this assumption and searched for the inhibitory element that mediates autoinhibition. Here we show that repression of EcoRII-C is achieved by addition of the inhibitory domain EcoRII-N or by single soluble peptides thereof in trans . Moreover, we perturbed contacts between the N- and the C-terminal domain of EcoRII by site-directed mutagenesis and proved that β-strand B1 and α-helix H2 are essential for autoinhibition; deletion of either secondary structural element completely relieved EcoRII autoinhibition. This potent regulation principle that keeps EcoRII enzyme activity controlled might protect bacteria against suicidal restriction of rare unmodified recognition sites in the cellular genome.  相似文献   

7.
8.
The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6–7 nucleotides) downstream of the asymmetric recognition sequence 5′-GCCGC-3′. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.  相似文献   

9.
The restriction endonuclease EcoRII requires the cooperative interaction with two copies of the sequence 5'CCWGG for DNA cleavage. We found by limited proteolysis that EcoRII has a two-domain structure that enables this particular mode of protein-DNA interaction. The C-terminal domain is a new restriction endonuclease, EcoRII-C. In contrast to the wild-type enzyme, EcoRII-C cleaves DNA specifically at single 5'CCWGG sites. Moreover, substrates containing two or more cooperative 5'CCWGG sites are cleaved much more efficiently by EcoRII-C than by EcoRII. The N-terminal domain binds DNA specifically and attenuates the activity of EcoRII by making the enzyme dependent on a second 5'CCWGG site. Therefore, we suggest that a precursor EcoRII endonuclease acquired an additional DNA-binding domain to enable the interaction with two 5'CCWGG sites. The current EcoRII molecule could be an evolutionary intermediate between a site-specific endonuclease and a protein that functions specifically with two DNA sites such as recombinases and transposases. The combination of these functions may enable EcoRII to accomplish its own propagation similarly to transposons.  相似文献   

10.
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.  相似文献   

11.
EcoRII is a homodimer with two domains consisting of a DNA-binding N terminus and a catalytic C terminus and recognizes two specific sequences on DNA. It shows a relatively complicated cleavage reaction in bulk solution. After binding to either recognition site, EcoRII cleaves the other recognition site of the same DNA (cis-binding) strand and/or the recognition site of the other DNA (trans-binding) strand. Although it is difficult to separate these two reactions in bulk solution, we could simply obtain the binding and cleavage kinetics of only the cis-binding by following the frequency (mass) changes of a DNA-immobilized quartz-crystal microbalance (QCM) responding to the addition of EcoRII in aqueous solution. We obtained the maximum binding amounts (Deltam(max)), the dissociation constants (K(d)), the binding and dissociation rate constants (k(on) and k(off)), and the catalytic cleavage reaction rate constants (k(cat)) for wild-type EcoRII, the N-terminal-truncated form (EcoRII N-domain), and the mutant derivatives in its C-terminal domain (K263A and R330A). It was determined from the kinetic analyses that the N-domain, which covers the catalytic C-domain in the absence of DNA, preferentially binds to the one DNA recognition site while transforming EcoRII into an active form allosterically, and then the secondary C-domain binds to and cleaves the other recognition site of the DNA strand.  相似文献   

12.
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.  相似文献   

13.
Tamulaitis G  Mucke M  Siksnys V 《FEBS letters》2006,580(6):1665-1671
The archetypal Type IIE restriction endonuclease EcoRII is a dimer that has a modular structure. DNA binding studies indicate that the isolated C-terminal domain dimer has an interface that binds a single cognate DNA molecule whereas the N-terminal domain is a monomer that also binds a single copy of cognate DNA. Hence, the full-length EcoRII contains three putative DNA binding interfaces: one at the C-terminal domain dimer and two at each of the N-terminal domains. Mutational analysis indicates that the C-terminal domain shares conserved active site architecture and DNA binding elements with the tetrameric restriction enzyme NgoMIV. Data provided here suggest possible evolutionary relationships between different subfamilies of restriction enzymes.  相似文献   

14.
To investigate the domain structure of proteins and the function of individual domains, proteins are usually subjected to limited proteolysis, followed by isolation of protein fragments and determination of their functions. We have developed an approach we call random gene dissection (RGD) for the identification of functional protein domains and their interdomain regions as well as their in vivo complementing fragments. The approach was tested on a two-domain protein, the type IIS restriction endonuclease BfiI. The collection of BfiI insertional mutants was screened for those that are endonucleolytically active and thus induce the SOS DNA repair response. Sixteen isolated mutants of the wild-type specificity contained insertions that were dispersed in a relatively large region of the target recognition domain. They split the gene into two complementing parts that separately were unable to induce the SOS DNA repair response. In contrast, all 19 mutants of relaxed specificity contained the cassette inserted into a very narrow interdomain region that connects BfiI domains responsible for DNA recognition and for cleavage. As expected, only the N-terminal fragment of BfiI was required to induce SOS response. Our results demonstrate that RGD can be used as a general method to identify complementing fragments and functional domains in enzymes.  相似文献   

15.
16.
Among four types of bacterial restriction enzymes that cleave a foreign DNA depending on its methylation status, type I enzymes composed of three subunits are interesting because of their unique DNA cleavage and translocation mechanisms performed by the restriction subunit (HsdR). The elucidated N-terminal fragment structure of a putative HsdR subunit from Vibrio vulnificus YJ016 reveals three globular domains. The nucleolytic core within an N-terminal nuclease domain (NTD) is composed of one basic and three acidic residues, which include a metal-binding site. An ATP hydrolase (ATPase) site at the interface of two RecA-like domains (RDs) is located close to the probable DNA-binding site for translocation, which is far from the NTD nucleolytic core. Comparison of relative domain arrangements with other functionally related ATP and/or DNA complex structures suggests a possible translocation and restriction mechanism of the HsdR subunit. Furthermore, careful analysis of its sequence and structure implies that a linker helix connecting two RDs and an extended region within the nuclease domain may play a central role in switching the DNA translocation into the restriction activity.  相似文献   

17.
The type II restriction endonuclease SsoII shows sequence similarity with 10 other restriction endonucleases, among them the type IIE restriction endonuclease EcoRII, which requires binding to an effector site for efficient DNA cleavage, and the type IIF restriction endonuclease NgoMIV, which is active as a homotetramer and cleaves DNA with two recognition sites in a concerted reaction. We show here that SsoII is an orthodox type II enzyme, which is active as a homodimer and does not require activation by binding to an effector site. Nevertheless, it shares with EcoRII and NgoMIV a very similar DNA-binding site and catalytic center as shown here by a mutational analysis, indicative of an evolutionary relationship between these three enzymes. We suggest that a similar relationship exists between other orthodox type II, type IIE, and type IIF restriction endonucleases. This may explain why similarities may be more pronounced between members of different subtypes of restriction enzymes than among the members of a given subtype.  相似文献   

18.

Background  

Catalytic domains of Type II restriction endonucleases (REases) belong to a few unrelated three-dimensional folds. While the PD-(D/E)XK fold is most common among these enzymes, crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI). Bioinformatics analyses supported by mutagenesis experiments suggested that some REases belong to the HNH fold (e.g. R.KpnI), and that a small group represented by R.Eco29kI belongs to the GIY-YIG fold. However, for a large fraction of REases with known sequences, the three-dimensional fold and the architecture of the active site remain unknown, mostly due to extreme sequence divergence that hampers detection of homology to enzymes with known folds.  相似文献   

19.
DNA methylation-dependent restriction enzymes have many applications in genetic engineering and in the analysis of the epigenetic state of eukaryotic genomes. Nevertheless, high-resolution structures have not yet been reported, and therefore mechanisms of DNA methylation-dependent cleavage are not understood. Here, we present a biochemical analysis and high-resolution DNA co-crystal structure of the N(6)-methyladenine (m6A)-dependent restriction enzyme R.DpnI. Our data show that R.DpnI consists of an N-terminal catalytic PD-(D/E)XK domain and a C-terminal winged helix (wH) domain. Surprisingly, both domains bind DNA in a sequence- and methylation-sensitive manner. The crystal contains R.DpnI with fully methylated target DNA bound to the wH domain, but distant from the catalytic domain. Independent readout of DNA sequence and methylation by the two domains might contribute to R.DpnI specificity or could help the monomeric enzyme to cut the second strand after introducing a nick.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号