首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Communication involves a pair of behaviours—a signal and a response—that are functionally interdependent. Consequently, the emergence of communication involves a chicken-and-egg problem: if signals and responses are dependent on one another, then how does such a relationship emerge in the first place? The empirical literature suggests two solutions to this problem: ritualization and sensory manipulation; and instances of ritualization appear to be more common. However, it is not clear from a theoretical perspective why this should be the case, nor if there are any other routes to communication. Here, we develop an analytical model to examine how communication can emerge. We show that: (i) a state of non-interaction is evolutionarily stable, and so communication will not necessarily emerge even when it is in both parties'' interest; (ii) the conditions for sensory manipulation are more stringent than for ritualization, and hence ritualization is likely to be more common; and (iii) communication can arise by a third route, when the intention to communicate can itself be communicated, but this may be limited to humans. More generally, our results demonstrate the utility of a functional approach to communication.  相似文献   

2.
This paper develops a set of simplified dynamical models with which to explore the conditions under which division of labor leads to optimized system output, as measured by the rate of production of a given product. We consider two models: in the first model, we consider the flow of some resource into a compartment, and the conversion of this resource into some product. In the second model, we consider the growth of autoreplicating systems. In this case, we divide the replication and metabolic tasks among different agents. The general features that emerge from our models is that division of labor is favored when the resource to agent ratio is at intermediate values, and when the time cost associated with transporting intermediate products is small compared to characteristic process times. The results of our model are consistent with the behavior of the cellular slime mold Dictyostelium discodeum, which switches from a single-celled to a multi-celled state when resources become limited. We also argue that division of labor in the context of our replication model suggests an evolutionary basis for the emergence of the stem-cell-based tissue architecture in complex organisms. Finally, the results of this paper may be useful for understanding how, in an economic context, firm productivity is maximized at intermediate firm sizes.  相似文献   

3.
Existing models explaining the evolution of sexual dimorphism in the timing of emergence (SDT) in Lepidoptera assume equal mortality rates for males and females. The limiting assumption of equal mortality rates has the consequence that these models are only able to explain the evolution of emergence of males before females, i.e. protandry—the more common temporal sequence of emergence in Lepidoptera. The models fail, however, in providing adaptive explanations for the evolution of protogyny, where females emerge before males, but protogyny is not rare in insects. The assumption of equal mortality rates seems too restrictive for many insects, such as butterflies. To investigate the influence of unequal mortality rates on the evolution of SDT, we present a generalised version of a previously published model where we relax this assumption. We find that longer life-expectancy of females compared to males can indeed favour the evolution of protogyny as a fitness enhancing strategy. Moreover, the encounter rate between females and males and the sex-ratio are two important factors that also influence the evolution of optimal SDT. If considered independently for females and males the predicted strategies can be shown to be evolutionarily stable (ESS). Under the assumption of equal mortality rates the difference between the females’ and males’ ESS remains typically very small. However, female and male ESS may be quite dissimilar if mortality rates are different. This creates the potential for an ‘evolutionary conflict’ between females and males. Bagworm moths (Lepidoptera: Psychidae) provide an exemplary case where life-history attributes are such that protogyny should indeed be the optimal emergence strategy from the males’ and females’ perspectives: (i) Female longevity is considerably larger than that of males, (ii) encounter rates between females and males are presumably low, and (iii) females mate only once. Protogyny is indeed the general mating strategy found in the bagworm family.  相似文献   

4.
5.
Abstract conceptual representations are critical for human cognition. Despite their importance, key properties of these representations remain poorly understood. Here, we used computational models of distributional semantics to predict multivariate fMRI activity patterns during the activation and contextualization of abstract concepts. We devised a task in which participants had to embed abstract nouns into a story that they developed around a given background context. We found that representations in inferior parietal cortex were predicted by concept similarities emerging in models of distributional semantics. By constructing different model families, we reveal the models’ learning trajectories and delineate how abstract and concrete training materials contribute to the formation of brain-like representations. These results inform theories about the format and emergence of abstract conceptual representations in the human brain.  相似文献   

6.
Protandry is the tendency for males to emerge before females, and it is common in insects with discrete, nonoverlapping generations in which females mate once only soon after emergence. In these circumstances males which emerge early will have more opportunities to mate than those which emerge late, so that protandry would be expected to evolve through sexual selection. In diploid species in which the primary sex ratio is fixed, protandry can evolve only through shortening the developmental time of males, so changing the distribution of their emergence times. Two models of the evolution of protandry in this way are compared. The first model assumes that the distribution of male emergence times can respond without any constraint to sexual selection, so leading to an “ideal free” distribution; the second model assumes that the distribution can shift only in mean (or possibly in mean and variance), but not in shape.  相似文献   

7.
Tessellations emerge in many natural systems, and the constituent domains often contain regular patterns, raising the intriguing possibility that pattern formation within adjacent domains might be correlated by the geometry, without the direct exchange of information between parts comprising either domain. We confirm this paradoxical effect, by simulating pattern formation via reaction-diffusion in domains whose boundary shapes tessellate, and showing that correlations between adjacent patterns are strong compared to controls that self-organize in domains with equivalent sizes but unrelated shapes. The effect holds in systems with linear and non-linear diffusive terms, and for boundary shapes derived from regular and irregular tessellations. Based on the prediction that correlations between adjacent patterns should be bimodally distributed, we develop methods for testing whether a given set of domain boundaries constrained pattern formation within those domains. We then confirm such a prediction by analysing the development of ‘subbarrel’ patterns, which are thought to emerge via reaction-diffusion, and whose enclosing borders form a Voronoi tessellation on the surface of the rodent somatosensory cortex. In more general terms, this result demonstrates how causal links can be established between the dynamical processes through which biological patterns emerge and the constraints that shape them.  相似文献   

8.
Pigment patterning in animals generally occurs during early developmental stages and has ecological, physiological, ethological, and evolutionary significance. Despite the relative simplicity of color patterns, their emergence depends upon multilevel complex processes. Thus, theoretical models have become necessary tools to further understand how such patterns emerge. Recent studies have reevaluated the importance of epigenetic, as well as genetic factors in developmental pattern formation. Yet epigenetic phenomena, specially those related to physical constraints that might be involved in the emergence of color patterns, have not been fully studied. In this article, we propose a model of color patterning in which epigenetic aspects such as cell migration, cell-tissue interactions, and physical and mechanical phenomena are central. This model considers that motile cells embedded in a fibrous, viscoelastic matrix-mesenchyme-can deform it in such a way that tension tracks are formed. We postulate that these tracks act, in turn, as guides for subsequent cell migration and establishment, generating long-range phenomenological interactions. We aim to describe some general aspects of this developmental phenomenon with a rather simple mathematical model. Then we discuss our model in the context of available experimental and morphological evidence for reptiles, amphibians, and fishes, and compare it with other patterning models. We also put forward novel testable predictions derived from our model, regarding, for instance, the localization of the postulated tension tracks, and we propose new experiments. Finally, we discuss how the proposed mechanism could constitute a dynamic patterning module accounting for pattern formation in many animal lineages.  相似文献   

9.
Tumor growth involves a dynamic interplay between cancer cells and host cells, which collectively form a tumor microenvironmental network that either suppresses or promotes tumor growth under different conditions. The transition from tumor suppression to tumor promotion is mediated by a tumor-induced shift in the local immune state, and despite the clinical challenge this shift poses, little is known about how such dysfunctional immune states are initiated. Clinical and experimental observations have indicated that differences in both the composition and spatial distribution of different cell types and/or signaling molecules within the tumor microenvironment can strongly impact tumor pathogenesis and ultimately patient prognosis. How such “functional” and “spatial” heterogeneities confer such effects, however, is not known. To investigate these phenomena at a level currently inaccessible by direct observation, we developed a computational model of a nascent metastatic tumor capturing salient features of known tumor-immune interactions that faithfully recapitulates key features of existing experimental observations. Surprisingly, over a wide range of model formulations, we observed that heterogeneity in both spatial organization and cell phenotype drove the emergence of immunosuppressive network states. We determined that this observation is general and robust to parameter choice by developing a systems-level sensitivity analysis technique, and we extended this analysis to generate other parameter-independent, experimentally testable hypotheses. Lastly, we leveraged this model as an in silico test bed to evaluate potential strategies for engineering cell-based therapies to overcome tumor associated immune dysfunction and thereby identified modes of immune modulation predicted to be most effective. Collectively, this work establishes a new integrated framework for investigating and modulating tumor-immune networks and provides insights into how such interactions may shape early stages of tumor formation.  相似文献   

10.
11.
Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers.  相似文献   

12.
We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of “source” species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the “target” species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.  相似文献   

13.
In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues.  相似文献   

14.
A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed biological shapes.  相似文献   

15.
RNA viruses may be particularly capable of contributing to the increasing biomedical problem of infectious disease emergence. Empirical studies and epidemiological models are informative for the understanding of evolutionary processes that promote pathogen emergence, but rarely are these approaches combined in the same study. Here, we used an epidemiology model containing observations of pathogen productivity in reservoirs, as a means to predict which pathogens should be most prone to emerge in a primary host such as humans. We employed as a model system a collection of vesicular stomatitis virus populations that had previously diverged in host-use strategy: specialists, directly selected generalists and indirectly selected (fortuitous) generalists. Using data from experiments where these viral strategists were challenged to grow on unencountered novel hosts in vitro, logistic growth models determined that the directly selected generalist viruses tended to grow best on model reservoirs. Furthermore, when we used the growth data to estimate average reproductive rate across secondary reservoirs, we showed that the combined approach could be used to estimate relative success of the differing virus strategists when encountering a primary host. Our study suggests that synergistic approaches combining epidemiological modelling with empirical data from experimental evolution may be useful for developing efforts to predict which types of pathogens pose the greatest probability of emerging in the future.  相似文献   

16.
17.
Predation is a strong selective force in most natural systems, potentially fueling evolutionary changes in prey morphology, life history and behaviour. Recent work has suggested that contrasting predation pressures may lead to population differentiation in personality traits. However, there are indications that these personality traits also differ between sexes and not necessarily in a consistent way between populations. We used an integrative approach to quantify boldness (latency to emerge from a shelter) in wild‐caught guppies in relation to predation pressure, population origin, sex and size. In addition we quantified the repeatability of these personality traits. We show that predation regime had significant effects on emergence time. In general, fish from high predation localities emerged sooner from the shelter compared to those from low predation localities. We found strong sex differences; males were significantly bolder than females. The relationship between emergence time and body size was non‐significant in all populations. We discuss what responses to expect from predator‐naïve versus predator‐experienced individuals and how this can be linked to the shyness–boldness continuum.  相似文献   

18.
In this communication, we present a unifying framework to understand the emergence and maintenance of diversity in ecological systems. We do this by developing a deterministic population model including density-dependent limitation in resources and available space. Our model shows that competitive exclusion and neutral coexistence represent different regimes of the same adaptive dynamics suggesting that neutrality is the general result of an adaptive process in a finite habitat with limited energetic resources. Our model explains the emergence of biodiversity through mutation and its maintenance through neutrality. We show that this framework provides the theoretical foundations to understand the emergence and maintenance of diversity in microbial ecosystems.  相似文献   

19.
It has been suggested that HIV-1 has evolved its set-point virus load to be optimized for transmission. Previous epidemiological models and studies into the heritability of set-point virus load confirm that this mode of adaptation within the human population is feasible. However, during the many cycles of replication between infection of a host and transmission to the next host, HIV-1 is under selection for escape from immune responses, and not transmission. Here we investigate with computational and mathematical models how these two levels of selection, within-host and between-host, are intertwined. We find that when the rate of immune escape is comparable to what has been observed in patients, immune selection within hosts is dominant over selection for transmission. Surprisingly, we do find high values for set-point virus load heritability, and argue that high heritability estimates can be caused by the ‘footprints’ left by differing hosts'' immune systems on the virus.  相似文献   

20.
Mathematical and computational modeling enables biologists to integrate data from observations and experiments into a theoretical framework. In this review, we describe how developmental processes associated with stem‐cell‐driven growth of tissue in both the embryonic and adult nervous system can be modeled using cellular automata (CA). A cellular automaton is defined by its discrete nature in time, space, and state. The discrete space is represented by a uniform grid or lattice containing agents that interact with other agents within their local neighborhood. This possibility of local interactions of agents makes the cellular automata approach particularly well suited for studying through modeling how complex patterns at the tissue level emerge from fundamental developmental processes (such as proliferation, migration, differentiation, and death) at the single‐cell level. As part of this review, we provide a primer for how to define biologically inspired rules governing these processes so that they can be implemented into a CA model. We then demonstrate the power of the CA approach by presenting simulations (in the form of figures and movies) based on building models of three developmental systems: the formation of the enteric nervous system through invasion by neural crest cells; the growth of normal and tumorous neurospheres induced by proliferation of adult neural stem/progenitor cells; and the neural fate specification through lateral inhibition of embryonic stem cells in the neurogenic region of Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号