首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding experiments with alkyl-transfer-active and -inactive mutants of human O6-alkylguanine DNA alkyltransferase (AGT) show that it forms an O6-methylguanine (6mG)-specific complex on duplex DNA that is distinct from non-specific assemblies previously studied. Specific complexes with duplex DNA have a 2:1 stoichiometry that is formed without accumulation of a 1:1 intermediate. This establishes a role for cooperative interactions in lesion binding. Similar specific complexes could not be detected with single-stranded DNA. The small difference between specific and non-specific binding affinities strongly limits the roles that specific binding can play in the lesion search process. Alkyl-transfer kinetics with a single-stranded substrate indicate that two or more AGT monomers participate in the rate-limiting step, showing for the first time a functional link between cooperative binding and the repair reaction. Alkyl-transfer kinetics with a duplex substrate suggest that two pathways contribute to the formation of the specific 6mG-complex; one at least first order in AGT, we interpret as direct lesion binding. The second, independent of [AGT], is likely to include AGT transfer from distal sites to the lesion in a relatively slow unimolecular step. We propose that transfer between distal and lesion sites is a critical step in the repair process.  相似文献   

2.
Melikishvili M  Rodgers DW  Fried MG 《DNA Repair》2011,10(12):1193-1202
Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. These activities protect normal cells and tumor cells against drugs that alkylate DNA; drugs that inactivate AGT are under test as chemotherapeutic enhancers. In studies using 6-carboxyfluorescein (FAM)-labeled DNAs, AGT reduced the fluorescence intensity by ∼40% at binding saturation, whether the FAM was located at the 5′ or the 3′ end of the DNA. AGT protected residual fluorescence from quenching, indicating a solute-inaccessible binding site for FAM. Sedimentation equilibrium analyses showed that saturating AGT-stoichiometries were higher with FAM-labeled DNAs than with unlabeled DNAs, suggesting that the FAM provides a protein binding site that is not present in unlabeled DNAs. Additional fluorescence and sedimentation measurements showed that AGT forms a 1:1 complex with free FAM. Active site benzylation experiments and docking calculations support models in which the primary binding site is located in or near the active site of the enzyme. Electrophoretic analyses show that FAM inhibits DNA binding (IC50 ∼ 76 μM) and repair of DNA containing an O6-methylguanine residue (IC50 ∼ 63 μM). Similar results were obtained with other polycyclic aromatic compounds. These observations demonstrate the existence of a new class of non-covalent AGT-inhibitors. After optimization for binding-affinity, members of this class might be useful in cancer chemotherapy.  相似文献   

3.
The DNA repair protein O6-alkylguanine alkyltransferase (AGT) is responsible for removing promutagenic alkyl lesions from exocyclic oxygens located in the major groove of DNA, i.e. the O6 and O4 positions of guanine and thymine. The protein carries out this repair reaction by transferring the alkyl group to an active site cysteine and in doing so directly repairs the premutagenic lesion in a reaction that inactivates the protein. In order to trap a covalent AGT–DNA complex, oligodeoxyribonucleotides containing the novel nucleoside N1,O6-ethanoxanthosine (eX) have been prepared. The eX nucleoside was prepared by deamination of 3′,5′-protected O6-hydroxyethyl-2′-deoxyguanosine followed by cyclization to produce 3′,5′-protected N1,O6-ethano-2′-deoxyxanthosine, which was converted to the nucleoside phosphoramidite and used in the preparation of oligodeoxyribonucleotides. Incubation of human AGT with a DNA duplex containing eX resulted in the formation of a covalent protein–DNA complex. Formation of this complex was dependent on both active human AGT and eX and could be prevented by chemical inactivation of the AGT with O6-benzylguanine. The crosslinking of AGT to DNA using eX occurs with high yield and the resulting complex appears to be well suited for further biochemical and biophysical characterization.  相似文献   

4.
We report in this article the interactions of five N-(1,10-phenanthrolin-5-yl)-β-glycopyranosylamine copper(II) complexes with G-quadruplex DNA. Specifically, the interactions of these compounds with a human telomeric oligonucleotide have been assessed by fluorescence-based assays (FRET melting and G4-FID), circular dichroism and competitive equilibrium dialysis experiments. The metal complexes bind and stabilize G-quadruplex DNA structures with apparent association constants in the order of 104–105 M−1 and the affinity observed is dependent on the ionic conditions utilized and the specific nature of the carbohydrate moiety tethered to the 1,10-phenanthroline system. The compounds showed only a slight preference to bind G-quadruplex DNA over duplex DNA when the quadruplex DNA was folded in sodium ionic conditions. However, the binding affinity and selectivity, although modest, were notably increased when the G-quadruplex DNA was folded in the presence of potassium metal ions. Moreover, the study points towards a significant contribution of groove and/or loop binding in the recognition mode of quadruplex structures by these non-classical quadruplex ligands. The results reported herein highlight the potential and the versatility of carbohydrate bis-phenanthroline metal-complex conjugates to recognize G-quadruplex DNA structures.  相似文献   

5.
O6-Alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O6-alkylguanine DNA alkyltransferase (AGT), which transfers the O6-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O6-methyldeoxyguanosine (O6-Me-dG) adducts placed within frequently mutated 5′-CG-3′ dinucleotides of the p53 tumor suppressor gene. O6-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O6-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O6-Me-dG were affected by neighboring 5-methylcytosine (MeC) in a sequence-dependent manner. AGT repair of O6-Me-dG adducts placed within 5′-CG-3′ dinucleotides of p53 codons 245 and 248 was hindered when MeC was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O6-Me-dG repair by AGT. The effects of MeC located immediately 5′ and in the base paired position to O6-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that MeC influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT.Metabolic activation of the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)3 produces methyl- and pyridyloxobutyldiazonium ions that can react with DNA to give O6-methyldeoxyguanosine (O6-Me-dG) and O6- pyridyloxobutyl deoxyguanosine (O6-POB-dG) lesions (1). Both adducts are strongly mutagenic because DNA polymerases preferentially misinsert thymine opposite O6-alkylguanines, resulting in G → A transitions (2). Studies in laboratory animals have provided evidence for a direct involvement of O6-Me-dG in NNK-mediated carcinogenesis (3).A specialized repair protein, O6-alkylguanine DNA alkyltransferase (AGT), removes the alkyl group from the O6 position of modified guanine bases, such as O6-Me-dG and O6-POB-dG, restoring normal guanine bases and preventing mutagenesis. AGT preferentially binds double-stranded DNA through a helix-turn-helix motif (4). In the resulting AGT-DNA complex, one recognition helix of the protein is found within the minor groove of the DNA, whereas the other one interacts with the phosphodiester backbone (4). The adducted nucleotide is flipped into a binding pocket within the protein, whereas Arg-128 takes its place in the double helix (4). A hydrogen bonding network around the active site involving His-148, Glu-172, and a water molecule promotes the deprotonation of the active site cysteine (Cys-145) (4, 5). The resulting thiolate anion acts as a nucleophile, displacing the O6 substituent of O6-alk-G and regenerating normal guanine (Fig. 1) (4, 5). The alkylated protein is inactive and is rapidly degraded by the ubiquitin proteolytic pathway (68).Open in a separate windowFIGURE 1.Direct repair of O6-alkyl-guanine adducts by AGT.AGT-mediated repair of O6-Me-dG lesions includes multiple kinetic steps (9). First, the AGT protein must bind adducted DNA in a reactive conformation. The alkylated nucleotide is flipped out of the DNA base stack to enter the hydrophobic pocket within AGT, and the methyl group is transferred from DNA to the protein. Finally, alkylated AGT protein dissociates from the repaired DNA. Zang et al. (9) reported that the chemical step of alkyl transfer is rate-limiting in the case of O6-Me-dG, but not O6-benzyl-dG. Furthermore, previous studies have shown that the repair of O6-Me-dG by mammalian AGT is influenced by the nature of the O6-alkyl group, the length of oligonucleotide duplex, the placement of the adduct, and the identities of neighboring nucleotides (1014).Removing the alkyl group from O6-Me-dG by AGT regenerates normal guanine and protects the genome from G → A transition mutations. For example, Wolf et al. (15) examined the relationship between the inactivation of the AGT gene by promoter hypermethylation and the mutational spectrum of the p53 tumor suppressor gene in non-small cell lung cancer. These authors found that only 8% of lung tumors had G → A transition mutations in the p53 gene when the promoter region of the gene coding for AGT was not methylated, thereby allowing protein expression (15). In contrast, 33% of tumors with a methylated AGT promoter had G → A mutations within the p53 gene (15). The p53 gene is mutated in over 50% of non-small cell lung cancer tumors (16).All CpG sites within the coding sequence of the p53 gene are endogenously methylated (17). Importantly, the same sites are among the major p53 mutational “hotspots” in smoking-induced lung cancer, e.g. codons 157, 158, 245, 248, 249, and 273 (18). Of all p53 mutations, G → A transitions account for 18–24% of genetic changes observed in lung cancer, including 35% of mutations at the CG dinucleotides (15, 19). Given the established role of NNK-induced O6-alkylguanine lesions in tobacco carcinogenesis and mutagenesis (20), they are likely to be involved in the induction of smoking-associated G → A transitions in the p53 gene.The presence of MeC residues may hinder the repair of O6-Me-dG lesions within endogenously methylated CG dinucleotides (14). For example, Bentivenga and Bresnick (14) showed that the repair of O6-Me-dG by recombinant AGT in the context of codon 248 of the p53 gene was reduced by 75% when MeC was placed immediately 5′ to the O6-Me-dG lesion. However, the effects of cytosine methylation on AGT repair of O6-Me-dG in other sequence contexts have not been previously investigated, and it is not known which individual steps in the removal of O6-methyl group are affected by neighboring MeC.Cytosine methylation leads to small structural changes of DNA duplex, including an increase in the base pair rise, roll, and local curvature angles, narrowing of the DNA minor groove, and decreased depth of the major groove (2123). These structural alterations may influence the affinity of the AGT protein for alkylated DNA. Furthermore, MeC enhances base stacking (24) and stabilizes the DNA duplex by increasing the molecular polarizability of the cytosine base (25), which can have an effect on the rate of AGT-mediated nucleotide flipping. The alkyl transfer step itself may be mediated by the presence of MeC through its effects on transition state geometry.The goal of the present study was to systematically examine the effects of cytosine methylation on AGT-mediated repair of O6-Me-dG lesions placed within 5′-CG-3′ dinucleotides representing major p53 mutational hotspots observed in lung cancer. The kinetics of alkyl transfer were analyzed using rapid-quench methods coupled with quantitative analyses of O6-Me-dG by isotope dilution-high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) (26). Furthermore, we examined the effects of cytosine methylation on AGT binding to O6-Me-dG-containing DNA and its influence on the rate of O6-Me-dG nucleotide flipping in the presence of AGT protein.  相似文献   

6.
The O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. Here we characterize the binding of AGT to single-stranded DNAs ranging in length from 5 to 78 nucleotides (nt). Binding is moderately cooperative (37.9 +/- 3.0 相似文献   

7.
The mutagenic and cytotoxic effects of many alkylating agents are reduced by O6-alkylguanine-DNA alkyltransferase (AGT). In humans, this protein not only protects the integrity of the genome, but also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we describe and test models for cooperative multiprotein complexes of AGT with single-stranded and duplex DNAs that are based on in vitro binding data and the crystal structure of a 1:1 AGT-DNA complex. These models predict that cooperative assemblies contain a three-start helical array of proteins with dominant protein-protein interactions between the amino-terminal face of protein n and the carboxy-terminal face of protein n + 3, and they predict that binding duplex DNA does not require large changes in B-form DNA geometry. Experimental tests using protein cross-linking analyzed by mass spectrometry, electrophoretic and analytical ultracentrifugation binding assays, and topological analyses with closed circular DNA show that the properties of multiprotein AGT-DNA complexes are consistent with these predictions.  相似文献   

8.
Kan ZY  Lin Y  Wang F  Zhuang XY  Zhao Y  Pang DW  Hao YH  Tan Z 《Nucleic acids research》2007,35(11):3646-3653
Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in the double-stranded telomere region where the two complementary strands are constrained in close vicinity and quadruplex formation, if possible, has to compete with the formation of the conventional Watson–Crick duplex. In this work, we studied quadruplex formation in oligonucleotides and double-stranded DNA containing both the G- and C-rich sequences to better mimic the in vivo situation. Under such competitive condition only duplex was observed in dilute solution containing physiological concentration of K+. However, quadruplex could preferentially form and dominate over duplex structure under molecular crowding condition created by PEG as a result of significant quadruplex stabilization and duplex destabilization. This observation suggests quadruplex may potentially form or be induced at the blunt end of a telomere, which may present a possible alternative form of structures at telomere ends.  相似文献   

9.
O6-Alkylguanine-DNA alkyltransferase (AGT) plays a major role in repair of the cytotoxic and mutagenic lesion O6-methylguanine (m6G) in DNA. Unlike the Escherichia coli alkyltransferase Ogt that also repairs O4-methylthymine (m4T) efficiently, the human AGT (hAGT) acts poorly on m4T. Here we made several hAGT mutants in which residues near the cysteine acceptor site were replaced by corresponding residues from Ogt to investigate the basis for the inefficiency of hAGT in repair of m4T. Construct hAGT-03 (where hAGT sequence -V149CSSGAVGN157- was replaced with the corresponding Ogt -I143GRNGTMTG151-) exhibited enhanced m4T repair activity in vitro compared with hAGT. Three AGT proteins (hAGT, hAGT-03, and Ogt) exhibited similar protection from killing by N-methyl-N′-nitro-N-nitrosoguanidine and caused a reduction in m6G-induced G:C to A:T mutations in both nucleotide excision repair (NER)-proficient and -deficient Escherichia coli strains that lack endogenous AGTs. hAGT-03 resembled Ogt in totally reducing the m4T-induced T:A to C:G mutations in NER-proficient and -deficient strains. Surprisingly, wild type hAGT expression caused a significant but incomplete decrease in NER-deficient strains but a slight increase in T:A to C:G mutation frequency in NER-proficient strains. The T:A to C:G mutations due to O4-alkylthymine formed by ethylating and propylating agents were also efficiently reduced by either hAGT-03 or Ogt, whereas hAGT had little effect irrespective of NER status. These results show that specific alterations in the hAGT active site facilitate efficient recognition and repair of O4-alkylthymines and reveal damage-dependent interactions of base and nucleotide excision repair.  相似文献   

10.
Luu KX  Kanugula S  Pegg AE  Pauly GT  Moschel RC 《Biochemistry》2002,41(27):8689-8697
Activity of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) is an important source of tumor cell resistance to alkylating agents. AGT inhibitors may prove useful in enhancing chemotherapy. AGT is inactivated by reacting stoichiometrically with O(6)-benzylguanine (b(6)G), which is currently in clinical trials for this purpose. Short oligodeoxyribonucleotides containing a central b(6)G are more potent inactivators of AGT than b(6)G. We examined whether human AGT could react with oligodeoxyribonucleotides containing multiple b(6)G residues. The single-stranded 7-mer 5'-d[T(b(6)G)(5)G]-3' was an excellent AGT substrate with all five b(6)G adducts repaired although one adduct was repaired much more slowly. The highly b(6)G-resistant Y158H and P140K AGT mutants were also inactivated by 5'-d[T(b(6)G)(5)G]-3'. Studies with 7-mers containing a single b(6)G adduct showed that 5'-d[TGGGG(b(6)G)G]-3' was more poorly repaired by wild-type AGT than 5'-d[T(b(6)G)GGGGG]-3' and 5'-d[TGG(b(6)G)GGG]-3' and was even less repairable by mutants Y158H and P140K. This positional effect was unaffected by interchanging the terminal 5'- or 3'-nucleotides and was also observed with single-stranded 16-mer oligodeoxyribonucleotides containing O(6)-methylguanine, where a minimum of four nucleotides 3' to the lesion was required for the most efficient repair. Annealing with the reverse complementary strands to produce double-stranded substrates increased the ability of AGT to repair adducts at all positions except at positions 2 and 15. Our results suggest that AGT recognizes the polarity of single-stranded DNA, with the best substrates having an adduct adjacent to the 5'-terminal residue. These findings will aid in designing novel AGT inhibitors that incorporate O(6)-alkylguanine adducts in oligodeoxyribonucleotide contexts.  相似文献   

11.
Alkylation of guanine at the O6 atom is a highly mutagenic DNA lesion because it alters the coding specificity of the base causing G:C to A:T transversion mutations. Specific DNA repair enzymes, e.g. O6‐alkylguanin‐DNA‐Transferases (AGT), recognize and repair such damage after looping out the damaged base to transfer it into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The O6‐alkylation of guanine may change the deformability of DNA which may facilitate the initial binding of a repair enzyme at the damaged site. In order to characterize the effect of O6‐methyl‐guanine (O6‐MeG) containing base pairs on the DNA deformability extensive comparative molecular dynamics (MD) simulations on duplex DNA with central G:C, O6‐MeG:C or O6‐MeG:T base pairs were performed. The simulations indicate significant differences in the helical deformability due to the presence of O6‐MeG compared to regular undamaged DNA. This includes enhanced base pair opening, shear and stagger motions and alterations in the backbone fine structure caused in part by transient rupture of the base pairing at the damaged site and transient insertion of water molecules. It is likely that the increased opening motions of O6‐MeG:C or O6‐MeG:T base pairs play a decisive role for the induced fit recognition or for the looping out of the damaged base by repair enzymes. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 23–32, 2015.  相似文献   

12.
13.
14.
15.
The mutagenic and cytotoxic effects of many endogenous and exogenous alkylating agents are mitigated by the actions of O(6)-alkylguanine-DNA alkyltransferase (AGT). In humans this protein protects the integrity of the genome, but it also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we report properties of the interaction between AGT and short DNA oligonucleotides. We show that although AGT sediments as a monomer in the absence of DNA, it binds cooperatively to both single-stranded and double-stranded deoxyribonucleotides. This strong cooperative interaction is only slightly perturbed by active site mutation of AGT or by alkylation of either AGT or DNA. The stoichiometry of complex formation with 16-mer oligonucleotides, assessed by analytical ultracentrifugation and electrophoretic mobility shift assays, is 4:1 on single-stranded and duplex DNA and is unchanged by several active site mutations or by protein or DNA alkylation. These results have significant implications for the mechanisms by which AGT locates and interacts with repairable alkyl lesions to effect DNA repair.  相似文献   

16.
O (6)-Alkylguanine-DNA alkyltransferase (AGT) plays an important role by protecting cells from alkylating agents. This reduces the frequency of carcinogenesis and mutagenesis initiated by such agents, but AGT also provides a major resistance mechanism to some chemotherapeutic drugs. To improve our understanding of the AGT-mediated repair reaction and our understanding of the spectrum of repairable damage, we have studied the ability of AGT to repair interstrand cross-link DNA damage where the two DNA strands are joined via the guanine- O (6) in each strand. An oligodeoxyribonucleotide containing a heptane cross-link was repaired with initial formation of an AGT-oligo complex and further reaction of a second AGT molecule yielding a hAGT dimer and free oligo. However, an oligodeoxyribonucleotide with a butane cross-link was a very poor substrate for AGT-mediated repair, and only the first reaction that forms an AGT-oligo complex could be detected. Models of the reaction of these substrates in the AGT active site show that the DNA duplex is forced apart locally to repair the first guanine. This reaction is greatly hindered with the butane cross-link, which is mostly buried in the active site pocket and limited in conformational flexibility. This limitation also prevents the adoption of a conformation for the second reaction to repair the AGT-oligo complex. These results are consistent with the postulated mechanism of AGT repair that involves DNA binding and flipping of the substrate nucleotide and indicate that hAGT can repair some types of interstrand cross-link damage.  相似文献   

17.
Cellular exposure to tobacco‐specific nitrosamines causes formation of promutagenic O6‐[4‐oxo‐4‐(3‐pyridyl)but‐1‐yl]guanine (O6‐POB‐G) and O6‐methylguanine (O6‐Me‐G) adducts in DNA. These adducts can be directly repaired by O6‐alkylguanine‐DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base‐flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6‐alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6‐phenylpyrrolo‐2′‐deoxycytidine (6‐phenylpyrrolo‐C) to investigate AGT‐DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6‐POB‐G and O6‐Me‐G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base‐paired to 6‐phenylpyrrolo‐C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped‐flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two‐step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base‐flipping. Placing 5‐methylcytosine immediately 5′ to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6‐POB‐G at codon 158 decreased the base flipping rate constant by 3.5‐fold compared with O6‐Me‐G at the same position. A similar effect was not observed at other codons.  相似文献   

18.
19.
A direct in vitro assay for O6-methylguanine-acceptor protein in cell extracts that measures the transfer of radioactivity from labeled O6-methylguanine (O6MeGua) adducts in an exogenous DNA substrate to protein is described. The protein-bound radioactivity is released and separated from that remaining in the DNA by sequential digestion with protease K and aminopeptidase M, and appears in the alcohol-soluble fraction of the digest. Data obtained by the direct assay are similar to those obtained by an indirect assay that measures the amount of O6MeGua-acceptor protein as the loss of O6MeGua from the DNA. In addition to its accuracy, the direct assay is also simple and can measure the amount of O6MeGua-acceptor activity in cell extracts prepared from as few as 0.5–1.0 × 106 mammalian cells.  相似文献   

20.
T E Spratt  J D Wu  D E Levy  S Kanugula  A E Pegg 《Biochemistry》1999,38(21):6801-6806
O6-Alkylguanine-DNA alkyltransferase (AGT) repairs DNA by transferring the methyl group from the 6-position of guanine to a cysteine residue on the protein. We previously found that the Escherichia coli Ada protein makes critical interactions with O6-methylguanine (O6mG) at the N1- and O6-positions. Human AGT has a different specificity than the bacterial protein. We reacted hAGT with double-stranded pentadecadeoxynucleotides containing analogues of O6mG. The second-order rate constants were in the following order (x10(-)5 M-1 s-1): O6mG (1.4), O6-methylhypoxanthine (1.6) > Se6-methyl-6-selenoguanine (0.1) > S6-methyl-6-thioguanine (S6mG) (0.02) > S6-methyl-6-thiohypoxanthine (S6mH), O6-methyl-1-deazaguanine (O6m1DG), O6-methyl-3-deazaguanine (O6m3DG), and O6-methyl-7-deazaguanine (O6m7DG) (all <0.0001). Electrophoretic mobility shift assays were carried out to determine the binding affinity to hAGT. Oligodeoxynucleotides containing O6mG, S6mG and O6m3DG bound to AGT in the presence of competitor DNA with Kd values from 5 to 20 microM, while those containing G, S6mH, O6m1DG, and O6m7DG did not (Kd > 200 microM). These results indicate that the 1-, N2-, and 7- positions of O6mG are critical in binding to hAGT, while the 3- and O6-positions are involved in methyl transfer. These results suggest that the active site of ada AGT is more flexible than hAGT and may be the reason ada AGT reacts with O4mT faster than hAGT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号