首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Adenosine to inosine (A-to-I) RNA editing is the most abundant editing event in animals. It converts adenosine to inosine in double-stranded RNA regions through the action of the adenosine deaminase acting on RNA (ADAR) proteins. Editing of pre-mRNA coding regions can alter the protein codon and increase functional diversity. However, most of the A-to-I editing sites occur in the non-coding regions of pre-mRNA or mRNA and non-coding RNAs. Untranslated regions (UTRs) and introns are located in pre-mRNA non-coding regions, thus A-to-I editing can influence gene expression by nuclear retention, degradation, alternative splicing, and translation regulation. Non-coding RNAs such as microRNA (miRNA), small interfering RNA (siRNA) and long non-coding RNA (lncRNA) are related to pre-mRNA splicing, translation, and gene regulation. A-to-I editing could therefore affect the stability, biogenesis, and target recognition of non-coding RNAs. Finally, it may influence the function of non-coding RNAs, resulting in regulation of gene expression. This review focuses on the function of ADAR-mediated RNA editing on mRNA non-coding regions (UTRs and introns) and non-coding RNAs (miRNA, siRNA, and lncRNA).  相似文献   

2.
MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex.  相似文献   

3.
RNA编辑是发生于双链RNA(dsRNA)上的一类重要转录后反应,可通过碱基插入、缺失或替换的方式改变RNA的核苷酸序列从而丰富转录组和蛋白质组水平的多样性。哺乳动物中最常见的RNA编辑是ADAR家族介导的腺嘌呤-次黄嘌呤编辑(A-to-I),其在碱基配对过程中被识别为鸟嘌呤。人类转录组中已报道了数百万个A-to-I编辑位点,而ADAR1是最主要的催化酶。在血液肿瘤中,ADAR1的失调将直接影响基因编码区、非编码区和miRNA前体的A-to-I编辑状态,从而导致一系列分子事件改变,如蛋白质编码序列改变、内含子滞留、选择性剪接和miRNA生物发生受抑制。近年来研究发现,异常的RNA编辑导致分子调控网络的紊乱,促进细胞增殖、凋亡受阻和细胞耐药,是白血病干细胞(LSCs)生成和干性维持的重要因素。目前,以RNA编辑为靶点的新药(如rebecsinib)已经在动物实验中取得良好疗效。有别于传统抗肿瘤药,表观遗传抗肿瘤药有望克服血液肿瘤的耐药、复发难题,为患者提供全新治疗选择。本综述总结了ADAR1介导的RNA编辑在血液肿瘤中的作用机制及其生物学功能研究的进展,并探讨了其在药物研发和临床应用中的价值。  相似文献   

4.
5.
A-to-I editing challenger or ally to the microRNA process   总被引:4,自引:0,他引:4  
Ohman M 《Biochimie》2007,89(10):1171-1176
  相似文献   

6.
7.
8.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

9.
RNA编辑是RNA转录过程中序列变化而引起的一种基因动态调控机制。腺苷脱氨酶(adenosine deaminases acting on RNA, ADAR)参与RNA编辑,将双链RNA中腺苷残基(A)转化为肌苷(I),接着被转录和拼接成鸟苷(G)。由ADAR催化,作用于RNA的A-I型RNA编辑是人类最常见的转录后修饰。近年来,这种修饰不仅存在于编码RNA中,在非编码RNA(noncoding RNA, ncRNA)中也逐渐被发现,如microRNA(miRNA)、小分子干扰RNA(siRNA)、转运RNA(tRNA)和长链非编码RNA(lncRNA)。这种修饰可能通过对microRNA和mRNA之间结合位点创造或破坏,进而影响ncRNA的生物起源、稳定性和靶向识别功能。目前,对这种生物现象的机制及ADAR底物,尤其是在ncRNA中的特性仍然没有得到充分的认识。主要对哺乳动物中ncRNA上的RNA编辑进行总结,并列举一些阐明其生物学功能的计算方法。  相似文献   

10.
One type of RNA editing involves the conversion of adenosine residues into inosine in double-stranded RNA through the action of adenosine deaminases acting on RNA (ADAR). A-to-I RNA editing of the coding sequence could result in synthesis of proteins not directly encoded in the genome. ADAR edits also non-coding sequences of target RNAs, such as introns and 3'-untranslated regions, which may affect splicing, translation, and mRNA stability. Three mammalian ADAR gene family members (ADAR1-3) have been identified. Here we investigated phenotypes of mice homozygous for ADAR1 null mutation. Although live ADAR1-/- embryos with normal gross appearance could be recovered up to E11.5, widespread apoptosis was detected in many tissues. Fibroblasts derived from ADAR1-/- embryos were also prone to apoptosis induced by serum deprivation. Our results demonstrate an essential requirement for ADAR1 in embryogenesis and suggest that it functions to promote survival of numerous tissues by editing one or more double-stranded RNAs required for protection against stress-induced apoptosis.  相似文献   

11.
12.
Endonuclease V is highly conserved, both structurally and functionally, from bacteria to humans, and it cleaves the deoxyinosine-containing double-stranded DNA in Escherichia coli, whereas in Homo sapiens it catalyses the inosine-containing single-stranded RNA. Thus, deoxyinosine and inosine are unexpectedly produced by the deamination reactions of adenine in DNA and RNA, respectively. Moreover, adenosine-to-inosine (A-to-I) RNA editing is carried out by adenosine deaminase acting on dsRNA (ADARs). We focused on Arabidopsis thaliana endonuclease V (AtEndoV) activity exhibiting variations in DNA or RNA substrate specificities. Since no ADAR was observed for A-to-I editing in A. thaliana, the possibility of inosine generation by A-to-I editing can be ruled out. Purified AtEndoV protein cleaved the second and third phosphodiester bonds, 3′ to inosine in single-strand RNA, at a low reaction temperature of 20–25°C, whereas the AtEndoV (Y100A) protein bearing a mutation in substrate recognition sites did not cleave these bonds. Furthermore, AtEndoV, similar to human EndoV, prefers RNA substrates over DNA substrates, and it could not cleave the inosine-containing double-stranded RNA. Thus, we propose the possibility that AtEndoV functions as an RNA substrate containing inosine induced by RNA damage, and not by A-to-I RNA editing in vivo.  相似文献   

13.
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR.  相似文献   

14.
15.
Adenosine-to-inosine modification of RNA molecules (A-to-I RNA editing) is an important mechanism that increases transciptome diversity. It occurs when a genomically encoded adenosine (A) is converted to an inosine (I) by ADAR proteins. Sequencing reactions read inosine as guanosine (G); therefore, current methods to detect A-to-I editing sites align RNA sequences to their corresponding DNA regions and identify A-to-G mismatches. However, such methods perform poorly on RNAs that underwent extensive editing ("ultra"-editing), as the large number of mismatches obscures the genomic origin of these RNAs. Therefore, only a few anecdotal ultra-edited RNAs have been discovered so far. Here we introduce and apply a novel computational method to identify ultra-edited RNAs. We detected 760 ESTs containing 15,646 editing sites (more than 20 sites per EST, on average), of which 13,668 are novel. Ultra-edited RNAs exhibit the known sequence motif of ADARs and tend to localize in sense strand Alu elements. Compared to sites of mild editing, ultra-editing occurs primarily in Alu-rich regions, where potential base pairing with neighboring, inverted Alus creates particularly long double-stranded RNA structures. Ultra-editing sites are underrepresented in old Alu subfamilies, tend to be non-conserved, and avoid exons, suggesting that ultra-editing is usually deleterious. A possible biological function of ultra-editing could be mediated by non-canonical splicing and cleavage of the RNA near the editing sites.  相似文献   

16.
17.
18.
Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号