首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schander, C., Halanych, K. M., Dahlgren, T. & Sundberg, P. (2003) Test of the monophyly of Odostomiinae and Turbonilliinae (Gastropoda, Heterobranchia, Pyramidellidae) based on 16S mtDNA sequences. — Zoologica Scripta, 32 , 243−254.
While gastropod phylogeny has received much recent attention, relationships within some major gastropod clades have still not been studied. The Pyramidellidae is one such group, comprising more than 6000 named species in more than 350 genera. We sequenced part of the mitochondrial 16S gene from 32 species in an attempt to clarify pyramidellid phylogeny and employed a successive alignment approach that allowed us to maximize the phylogenetic signal of the data. Neighbour-joining, maximum parsimony and likelihood analyses recovered two distinct clades. One clade consisted of Noemiamea which nested within Odostomia ( sensu stricto ) . The inclusion of Brachystomia , Megastomia , Jordaniella and Liostomia within Odostomia is not supported. The second clade comprised Spiralinella , Brachystomia , Boonea , Jordaniella , Liostomia and Parthenina . Our results further suggest that Turbonilla, as interpreted by most authors, is polyphyletic. This study shows that the 16S gene is useful in unravelling pyramidellid phylogeny but needs to be combined with other data (including molecular, morphological and developmental) to fully clarify the evolutionary relationships.  相似文献   

2.
NEOGASTROPOD PHYLOGENY: A MOLECULAR PERSPECTIVE   总被引:4,自引:0,他引:4  
The origin and evolution of the gastropod order Neogastropodawas investigated using an iterative, two gene (18S rDNA andcytochrome c oxidase I) approach to phylogeny reconstruction.Partial sequences spanning approximately 450 base pairs nearthe 5' end of the 18S rDNA gene confirmed the monophyly of Apogastropodaand its two subclades, the Caenogastropoda (including Neogastropodaand Architaenioglossa) and the Heterobranchia, but were incapableof resolving relationships among neogastropod families, or betweenNeogastropoda and higher Caenogastropoda. The monophyly of Heterobranchiais additionally supported by the presence within this groupof a large insert of variable length in the 18S rDNA gene inthe region corresponding to the E-10–1 helix of the RNAmolecule. Cytochrome c oxidase I sequences were able to resolvefully the relationships among representatives of ten familiesof Neogastropoda. Maximum parsimony, maximum likelihood andneighbor-joining analyses of these data all revealed that Buccinoideaand Muricoidea [sensu Thiele, 1929] each represent a clade,while the families assigned by Thiele and some subsequent authorsto the superfamily Volutoidea comprise a grade. Although thetwo toxoglossan taxa included in our study emerged as a graderather than a clade, denser taxonomic sampling of this groupwill be undertaken to investigate further the paraphyly of Conoidea.Based on percent transversions at third codon positions of theCO I gene, differences among neogastropod families as well asthose between the neogastropod families and Cerithium are comparableto genetic differences between orders of mammals, but are onlyslightly greater than differences between genera of penaeidshrimp.  相似文献   

3.
Phylogenetic analyses of partial sequences spanning approximately 450 nucleotides near the 5'end of the 18s rDNA strongly support the monophyly of Apogastropoda and its constituent clades, Caenogastropoda and Heterobranchia. Representatives of the architaenioglossan groups Cyclophoroidea, Ampullariidae and Viviparidae invariably emerge within Caenogastropoda in all analyses. While the Cyclophoroidea and Ampullariidae are monophyletic, the varying position of Viviparidae in all outcomes contradicts its hypothesized sister group relationship with Ampullariidae, and thus the monophyly of Ampullarioidea. Because of the position of Viviparidae, Architaenioglossa does not emerge as a clade in any of our analyses. Campanile consistently emerges between Cyclophoroidea and Cerithioidea, or in a clade with Cyclophoroidea and Ampullariidae, a position not predicted by previous morphological studies. Maximum parsimony analyses of sequence data show Caenogastropoda to comprise a series of sequentially diverging higher taxa. However, maximum likelihood analyses as well as maximum parsimony analyses using only trans-versions divide Caenogastropoda into two clades, one containing the architaenioglossan taxa, Campaniloidea and Cerithioidea, the other containing the higher caenogastropod taxa included in Eucaenogastropoda (Haszprunar, 1988) [= Hypsogastropoda (Ponder & Lindberg 1997)l. Denser taxon sampling revealed insertions to be present in the 18s rDNA gene of several caenogastropod taxa. Earlier reports (Harasewych et al. 1997b) of reduced sequence divergence levels in Caenogastropoda are shown to be restricted to Hypsogastropoda. Based on a broader taxonomic sampling, divergence levels within Caenogastropoda are comparable to those found within Heterobranchia.  相似文献   

4.
A molecular phylogenetic investigation of the hypothesized antiquity of the hydrothermal vent endemic Neomphalina (Mollusca; Gastropoda) is reported. Sequences of two domains of the gene encoding for 28S ribosomal RNA were acquired for 3 outgroup and 32 gastropod genera. Use of the likelihood ratio test indicated complex substitution patterns for these domains and taxa, corresponding to a general time-reversible model with among-site rate variation. Phylogenetic analyses were performed using this model under maximum likelihood criteria. The data lacked resolution of gastropod radiations of the Paleozoic and all three of the outgroup sequences were randomized relative to the ingroup. Acceleration of evolutionary rates had additionally randomized the sequences of the Patellogastropoda relative to the other Gastropoda. The data resolved radiations of the Mesozoic and supported monophyly of the sampled Neritopsina, Vetigastropoda, Neomphalina, Caenogastropoda (including Campanile and the Architaenioglossa), and Heterobranchia (Valvata + Euthyneura), although several results were not significantly different from nonmonophyletic alternatives. Mesozoic origins of the hydrothermal vent endemic Neomphalina are preliminarily supported and implications for the hydrothermal vent refugia hypothesis discussed. Issues related to phylogenetic resolution of the Gastropoda are additionally discussed.  相似文献   

5.
Viewed under UV light the diverse and exceptionally well-preserved molluscs from the Late Jurassic Cordebugle Konservat Lagerstätte (Calvados, Normandy, France) reveal fluorescent fossil shell colour patterns predating the oldest previously known instance of such patterns by 100 Myr. Evidently, residual colour patterns are observable in Mesozoic molluscs by application of this non-destructive method, provided the shells are not decalcified or recrystallized. Among 46 species which are assigned to twelve gastropod families and eight bivalve families, no less than 25 species yielded positive results. Out of nine colour pattern morphologies that have been distinguished six occur in gastropods and three in bivalves. The presence of these variant morphologies clearly indicates a significant pre-Cenozoic diversification of colour patterns, especially in gastropods. In addition, the occurrence of two distinct types of fluorescence highlights a major difference in the chemical composition of the pigments involved in colour pattern formation in gastropods. This discovery enables us to discriminate members of higher clades, i.e. the Vetigastropoda emitting red fluorescence from the Caenogastropoda and Heterobranchia emitting whitish-beige to yellow fluorescence. Consequently, fluorescent colour patterns may help to allocate part of the numerous enigmatic Mesozoic gastropod taxa to their correct systematic position.  相似文献   

6.
Chromodorid nudibranchs (16 genera, 300+ species) are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new), representing 157 (106 new) chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI). We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions), while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names.  相似文献   

7.
Sea anemones (Cnidaria, Actiniaria) are present in all marine ecosystems, including chemosynthetic environments. The high level of endemicity of sea anemones in chemosynthetic environments and the taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure. We use five molecular markers to explore the phylogenetic relationships of the superfamily Mesomyaria, which includes most of the species that live in chemosynthetic, deep-sea, and polar sea habitats and to test the monophyly of the recently defined clades Actinostolina and Chemosynthina. We found that sea anemones of chemosynthetic environments derive from at least two different lineages: one lineage including acontiate deep-sea taxa and the other primarily encompassing shallow-water taxa.  相似文献   

8.
The phylogenetic relationships among certain groups of gastropods have remained unresolved in recent studies, especially in the diverse subclass Opisthobranchia, where nudibranchs have been poorly represented. Here we present the complete mitochondrial genomes of Melibe leonina and Tritonia diomedea (more recently named T. tetraquetra), two nudibranchs from the unrepresented Cladobranchia group, and report on the resulting phylogenetic analyses. Both genomes coded for the typical thirteen protein-coding genes, twenty-two transfer RNAs, and two ribosomal RNAs seen in other species. The twelve-nucleotide deletion previously reported for the cytochrome oxidase 1 gene in several other Melibe species was further clarified as three separate deletion events. These deletions were not present in any opisthobranchs examined in our study, including the newly sequenced M. leonina or T. diomedea, suggesting that these previously reported deletions may represent more recently divergent taxa. Analysis of the secondary structures for all twenty-two tRNAs of both M. leonina and T. diomedea indicated truncated d arms for the two serine tRNAs, as seen in some other heterobranchs. In addition, the serine 1 tRNA in T. diomedea contained an anticodon not yet reported in any other gastropod. For phylogenetic analysis, we used the thirteen protein-coding genes from the mitochondrial genomes of M. leonina, T. diomedea, and seventy-one other gastropods. Phylogenetic analyses were performed for both the class Gastropoda and the subclass Opisthobranchia. Both Bayesian and maximum likelihood analyses resulted in similar tree topologies. In the Opisthobranchia, the five orders represented in our study were monophyletic (Anaspidea, Cephalaspidea, Notaspidea, Nudibranchia, Sacoglossa). In Gastropoda, two of the three traditional subclasses, Opisthobranchia and Pulmonata, were not monophyletic. In contrast, four of the more recently named gastropod clades (Vetigastropoda, Neritimorpha, Caenogastropoda, and Heterobranchia) were all monophyletic, and thus appear to be better classifications for this diverse group.  相似文献   

9.
10.
Sequence data from the intron and spacer of the trnL-F chloroplast region elucidate the phylogenetic relationships of the tribe Diseae (Orchidoideae: Orchidaceae). Within Diseae, 41 species of Disa, two of Brownleea, three of Satyrium, and two of Corycium were included, with five species of Habenaria sensu lato (Orchideae) and one epidendroid as outgroups. The sequences revealed substitutions and considerable length variation, due mainly to the presence of repeat motifs. Phylogenetic analysis using parsimony revealed five distinct clades. The branching order of the five weakly supported the paraphyly of Diseae, with the successive divergence of Brownleea, Corycium, Habenaria, Satyrium, and Disa. Within the monophyletic Disa, three main groupings appeared, two strongly supported clades representing sect. Racemosae and sect. Coryphaea and the third grouping containing several clades currently grouped into sections based on morphological phylogenies. Some discrepancies between the molecular phylogeny and the phylogeny based on morphological characters may require reevaluation of some of the morphological characters. The presence of different numbers of repeat motifs, both among different taxa and within taxa, indicates that these characters may be phylogenetically informative at the population level.  相似文献   

11.
The shell of marine gastropods conserves and reflects early ontogeny, including embryonic and larval stages, to a high degree when compared with other marine invertebrates. Planktotrophic larval development is indicated by a small embryonic shell (size is also related to systematic placement) with little yolk followed by a multiwhorled shell formed by a free‐swimming veliger larva. Basal gastropod clades (e.g. Vetigastropoda) lack planktotrophic larval development. The great majority of Late Palaeozoic and Mesozoic ‘derived’ marine gastropods (Neritimorpha, Caenogastropoda and Heterobranchia) with known protoconch had planktotrophic larval development. Dimensions of internal moulds of protoconchs suggest that planktotrophic larval development was largely absent in the Cambrian and evolved at the Cambrian–Ordovician transition, mainly due to increasing benthic predation. The evolution of planktotrophic larval development offered advantages and opportunities such as more effective dispersal, enhanced gene flow between populations and prevention of inbreeding. Early gastropod larval shells were openly coiled and weakly sculptured. During the Mid‐ and Late Palaeozoic, modern tightly coiled larval shells (commonly with strong sculpture) evolved due to increasing predation pressure in the plankton. The presence of numerous Late Palaeozoic and Triassic gastropod species with planktotrophic larval development suggests sufficient primary production although direct evidence for phytoplankton is scarce in this period. Contrary to previous suggestions, it seems unlikely that the end‐Permian mass extinction selected against species with planktotrophic larval development. The molluscan classes with highest species diversity (Gastropoda and Bivalvia) are those which may have planktotrophic larval development. Extremely high diversity in such groups as Caenogastropoda or eulamellibranch bivalves is the result of high phylogenetic activity and is associated with the presence of planktotrophic veliger larvae in many members of these groups, although causality has not been shown yet. A new gastropod species and genus, Anachronistella peterwagneri, is described from the Late Triassic Cassian Formation; it is the first known Triassic gastropod with an openly coiled larval shell.  相似文献   

12.
Squamate reptiles (lizards and snakes) are one of the most diverse groups of terrestrial vertebrates. Recent molecular analyses have suggested a very different squamate phylogeny relative to morphological hypotheses, but many aspects remain uncertain from molecular data. Here, we analyse higher-level squamate phylogeny with a molecular dataset of unprecedented size, including 161 squamate species for up to 44 nuclear genes each (33 717 base pairs), using both concatenated and species-tree methods for the first time. Our results strongly resolve most squamate relationships and reveal some surprising results. In contrast to most other recent studies, we find that dibamids and gekkotans are together the sister group to all other squamates. Remarkably, we find that the distinctive scolecophidians (blind snakes) are paraphyletic with respect to other snakes, suggesting that snakes were primitively burrowers and subsequently re-invaded surface habitats. Finally, we find that some clades remain poorly supported, despite our extensive data. Our analyses show that weakly supported clades are associated with relatively short branches for which individual genes often show conflicting relationships. These latter results have important implications for all studies that attempt to resolve phylogenies with large-scale phylogenomic datasets.  相似文献   

13.
Although Ensifera is a major insect model group, its phylogenetic relationships have been understudied so far. Few phylogenetic hypotheses have been proposed, either with morphological or molecular data. The largest dataset ever used for phylogeny reconstruction on this group is molecular (16S rRNA, 18S rRNA and 28S rRNA sequences for 51 ensiferan species), which has been used twice with different resultant topologies. However, only one of these hypotheses has been adopted commonly as a reference classification. Here we re‐analyse this molecular dataset with different methods and parameters to test the robustness and the stability of the adopted phylogeny. Our study reveals the instability of phylogenetic relationships derived from this dataset, especially for the deepest nodes of the group, and suggests some guidelines for future studies. The comparison between the different classifications proposed in the past 70 years for Ensifera and our results allows the identification of potential monophyletic clades (katydids, mole crickets, scaly crickets + Malgasia, true crickets, leaf roller crickets, cave crickets) and the remaining unresolved clades (wetas, Jerusalem crickets and most of the highest rank clades) in Ensifera phylogeny.  相似文献   

14.
Sequence data for two segments of 28S and Histone H3 from 36 gastropod taxa, a chiton, two bivalves and Nautilus are used to test recently published morphology‐based phylogenetic hypotheses of gastropod relationships. Statistical results suggest that the accuracy of the available hypotheses could be improved. The data support the monophyly of the Patellogastropoda (true limpets), Euthyneura and the ‘higher’ vetigastropods and the polyphyly of the ‘Cocculiniformia’. The division of the gastropods into two major clades (Eogastropoda and Orthogastropoda) as has been proposed on morphological grounds is not supported, and neither the Caenogastropoda nor Heterobranchia is well supported. Within the Euthyneura, opisthobranchs are paraphyletic with respect to the pulmonates. The hot vent taxon, Depressigyra, groups with the lower vetigastropod Pleurotomaria in some analyses. Much of the variability in the 28S rDNA segments lies in discrete areas of the sequence. Forone of the segments, corresponding to positions 691–942 of the mosquito Aedes albopictus 28S sequence, the variable regions represent known expansion regions (D4 and D5). For the other segment, corresponding to positions 2259–2538 of the A. albopictus sequence, the variable area, which is found in the patellogastropods, vetigastropods and Nautilus, represents an unreported expansion region. The data show marked variability in the rate of evolution in both segments of the 28S rDNA, whether or not the expansion regions are included. The variability is largely clade specific. Rates are high in the patellogastropods, vetigastropods, the lower heterobranch ‘Heterostropha’ (Cornirostra and Philippea), Depressigyra and the deep sea cocculinid limpet Coccopigya and substantially lower in other taxa. Rate variation in the histone H3 data is less extreme. The correlation between evolutionary rates in the two 28S rDNA segments is very high, andis also significant for the the pairing of each of the 28S rDNA segments with H3. The rate variability may be due to differential selection but no causative factor has been identified. The histone H3 data have high codon usage bias. For all amino acids encoded by multiple codons, at least some triplets occur at a frequency of less than a quarter of their expected usage. For all three‐, four‐and sixfold degenerate amino acids, the most abundant triplet occurs at least twice as frequently as expected. Despite the usage bias, there is a large amount of apparent homoplasy in synonymous alternatives at both the first and third codon positions.  相似文献   

15.
Marine butterflyfishes (10 genera, 114 species) are conspicuously beautiful and abundant animals found on coral reefs worldwide, and are well studied due to their ecological importance and commercial value. Several phylogenies based on morphological and molecular data exist, yet a well-supported molecular phylogeny at the species level for a wide range of taxa remains to be resolved. Here we present a molecular phylogeny of the butterflyfishes, including representatives of all genera (except Parachaetodon) and at least one representative of all commonly cited subgenera of Chaetodon (except Roa sensuBlum, 1988). Genetic data were collected for 71 ingroup and 13 outgroup taxa, using two nuclear and three mitochondrial genes that total 3332 nucleotides. Bayesian inference, parsimony, and maximum likelihood methods produced a well-supported phylogeny with strong support for a monophyletic Chaetodontidae. The Chaetodon subgenera Exornator and Chaetodon were found to be polyphyletic, and the genus Amphichaetodon was not the basal sister group to the rest of the family as had been previously proposed. Molecular phylogenetic analysis of data from 5 genes resolved some clades in agreement with previous phylogenetic studies, however the topology of relationships among major butterflyfish groups differed significantly from previous hypotheses. The analysis recovered a clade containing Amphichaetodon, Coradion, Chelmonops, Chelmon, Forcipiger, Hemitaurichthys, Johnrandallia, and Heniochus. Prognathodes was resolved as the sister to all Chaetodon, as in previous hypotheses, although the topology of subgeneric clades differed significantly from hypotheses based on morphology. We use the species-level phylogeny for the butterflyfishes to resolve long-standing questions regarding the use of subgenera in Chaetodon, to reconstruct molecular rates and estimated dates of diversification of major butterflyfish clades, and to examine global biogeographic patterns.  相似文献   

16.
The phylogeny of Greek populations of the terrestrial isopod genus Ligidium is reconstructed based on three mtDNA gene segments: 12S rRNA, 16S rRNA and COI. Two widely distributed European species, as well as three outgroups belonging to different isopod genera, were also included in the analyses. The samples used represent almost all Ligidium species known to occur in Greece, as well as several populations of unknown specific status plus some new records. Phylogenetic analyses of the combined data set were performed using Bayesian inference and maximum parsimony. The two main sister clades with good support indicate the sympatric differentiation of two lineages in southern continental Greece (Peloponnisos), where Ligidium populations exhibit a mosaic distribution of sibling species. The insular populations of the Aegean Islands show increased genetic divergence and form separate clades. The presence of a third lineage of Asiatic origin is strongly suggested by both the molecular phylogeny and morphology. The only presumably valid diagnostic morphological character exhibits only partial correspondence to well supported clades of the molecular phylogeny. Genetic differentiation between populations is very high, a fact that can be attributed to the strict ecological specialization of these animals that leads to increased levels of isolation even between populations that are in close proximity. As a consequence, Greek Ligidium populations, especially those present on islands, are unique genetic pools and extremely vulnerable to extinction.  相似文献   

17.
The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.  相似文献   

18.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

19.
Whereas Hyalogyrina Marshall, 1988 was originally considered a skeneid vetigastropod, the family Hyalogyrinidae Warén & Bouchet, 1993 has later been classified as basal Heterobranchia despite their rhipidoglossate radula. In order to evaluate this placement and to shed more light on the origin of all higher Gastropoda, we investigated five representatives of all three nominal hyalogyrinid genera by means of semithin serial sectioning and computer-aided 3D reconstruction of the respective anatomy, which we present in an interactive way. In general the morphological features (shell, external morphology, anatomy) fully confirm the placement of Hyalogyrinidae in the Heterobranchia, but in particular the conditions of the genital system vary substantially within the family. The ectobranch gill of Hyalogyrinidae is shared with Valvatidae, Cornirostridae, and Xylodisculidae; consequently all these families are united in Ectobranchia Fischer, 1884. The rhipidoglossate hyalogyrinid radula suggests independent acquisition of taenioglossate radulae in the Caenogastropoda and other Ectobranchia. Therefore, the origin of the Heterobranchia—and thus of all higher gastropods—looks to have taken place already on the rhipidoglossate, i.e. the ‘archaeogastropod’, level of evolution. Ectobranchia are considered the first extant offshoot of the Heterobranchia; implications for the stem species of the latter are outlined.  相似文献   

20.
被子植物系统发育深层关系研究: 进展与挑战   总被引:1,自引:0,他引:1  
曾丽萍  张宁  马红 《生物多样性》2014,22(1):21-434
被子植物系统发育学是研究被子植物及其各类群间亲缘关系与进化历史的学科。从20世纪90年代起, 核苷酸和氨基酸序列等分子数据开始被广泛运用于被子植物系统发育研究, 经过20多年的发展, 从使用单个或联合少数几个细胞器基因, 到近期应用整个叶绿体基因组来重建被子植物的系统发育关系, 目、科水平上的被子植物系统发育框架已被广泛接受。在这个框架中, 基部类群、主要的5个分支(即真双子叶植物、单子叶植物、木兰类、金粟兰目和金鱼藻目)、每个分支所包含的目以及几个大分支包括的核心类群等都具有高度支持。与此同时, 细胞器基因还存在一些固有的问题, 例如单亲遗传、系统发育信息量有限等, 因此近年来双亲遗传的核基因在被子植物系统发育研究中的重要性逐渐得到关注, 并在不同分类阶元的研究中都取得了一定进展。但是, 被子植物系统发育中仍然存在一些难以确定的关系, 例如被子植物5个分支之间的关系、真双子叶植物内部某些类群的位置等。本文简述了20多年来被子植物系统发育深层关系的主要研究进展, 讨论了被子植物系统发育学常用的细胞器基因和核基因的选用, 已经确定和尚未确定系统发育位置的主要类群, 以及研究中尚存在的问题和可能的解决方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号