首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disrupted spheroplast preparations of Pseudomonas schuylkilliensis strain P contained fragments of cytoplasmic membrane and approximately 82% of the total cellular phospholipid. The protoplast-bursting factor (PB-factor), partially purified from pig pancreas, and a heat-treated pancreatic lipase fraction both inhibited ribonucleic acid (RNA) synthesis by disrupted spheroplasts but did not inhibit or only slightly inhibited RNA synthesis by intact cells or intact spheroplasts. The PB-factor preparation and the heat-treated pancreatic lipase fraction catalyzed partial (15 to 50%) deacylation of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine in disrupted spheroplasts but not in intact spheroplasts. Phospholipase A activity was demonstrated in the PB-factor preparation by use of isolated phospholipids as substrates. Treatment of disrupted spheroplasts with the PB-factor preparation caused a 70% inhibition in oxidative phosphorylation and RNA synthesis, but had little effect on electron transport. Addition of adenosine-5'-triphosphate or adenosine-5'-diphosphate and a mixture of ribonucleosides after treatment with the PB-factor preparation partially restored oxidative phosphorylation but did not relieve the inhibition in RNA synthesis. The most reasonable explanation for the latter observation appears to be that the concentrations of newly synthesized nucleotides retained by the preparations with partially deacylated membrane phospholipids were insufficient to permit the synthesis of RNA.  相似文献   

2.
Macromolecule synthesis in yeast spheroplasts   总被引:27,自引:16,他引:11  
Conditions have been established for the preparation of spheroplasts of Saccharomyces cerevisiae which are able to increase their net content of protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), several-fold upon incubation in a medium stabilized with 1 m sorbitol. The rate of RNA and protein synthesis in the spheroplasts is nearly the same as that occurring in whole cells incubated under the same conditions; DNA synthesis occurs at about half the whole cell rate. The spheroplasts synthesize transfer RNA and ribosomal RNA. The newly synthesized ribosomal RNA is incorporated into ribosomes and polysomes. The polysomes are the site of protein synthesis in these spheroplasts. Greater than 90% of the total RNA can be solubilized by treatment of the spheroplasts with sodium dodecyl sulfate or sodium deoxycholate. These spheroplast preparations appear to be a useful subject for the study of RNA metabolism in yeast.  相似文献   

3.
Diphtheria toxin kills spheroplasts of Saccharomyces cerevisiae but not the intact yeast cells. After 2 h of exposure to ca. 10(-7) M toxin, less than 1% of spheroplasts were able to regenerate into intact cells. The same high levels of toxin inhibited the rate of protein synthesis by more than 90% within 1 h, whereas RNA and DNA synthesis were not inhibited until 4 h or exposure. Both killing and protein synthesis inhibition were dependent on toxin concentration. The nature of the toxin-cell interaction was also studied by using fragments of intact toxin and mutant toxin proteins. Neither toxin fragment A nor CRM45 nor CRM197 affected spheroplasts, but CRM197 and ATP prevented the inhibitory action of intact toxin. These results suggest that toxin acts on S. cerevisiae spheroplasts in much the same manner as it acts on sensitive mammalian cells.  相似文献   

4.
A membrane preparation obtained from osmotic lysate of spheroplasts of Escherichia coli cells showed an activity of synthesizing beta-galactosidase which was dependent upon oxidative phosphorylation. The synthesis was inhibited by the addition of actinomycin D or of chloramphenicol. The beta-galactosidase synthesized in the membrane preparation was completely released into the medium, while that synthesized in the spheroplasts and intact cells remained within the cells. The minimum concentration of the inducer, methyl-beta-d-thiogalactoside, required for the induction of beta-galactosidase was 5 x 10(-5)m for intact cells, 3 x 10(-4)m for spheroplasts and 1 x 10(-3)m for membrane preparation. Incorporation of labeled glucose into insoluble components in membrane preparation was extremely low compared with that in intact cells or in spheroplasts. Based on these and other observations, the nature of this membrane preparation is discussed in relation to the structure of E. coli cells.  相似文献   

5.
Relatively large-scale production and purification of meningopneumonitis organisms was developed for chemical and immunological studies on cell walls of the infectious dense forms. By disruption of purified organisms with glass beads in a Mickle shaker, highly purified preparations of cell walls were obtained by sucrose density gradient centrifugation, enzyme digestion, and sodium dodecyl sulfate treatment. The dry-weight recovery of purified cell walls from intact organisms was about 13%. When (32)P-labeled preparations of cell walls were fractionated into acid-soluble, lipid, ribonucleic acid (RNA), deoxyribonucleic (DNA), and residual fractions, about 80% of the (32)P in cell wall preparations was recovered in the phospholipid fraction, which corresponded to about 3% of the total phospholipid in the intact organisms. About 7% of the (32)P in purified cell walls was recovered in the RNA and DNA fractions respectively, but this corresponds to only about 0.4% of the (32)P found in those fractions in intact organisms. From dry-weight determinations, it was calculated that the purified cell wall preparations contained only 0.6% total nucleic acids, and these are probably not true cell wall constituents. These cell walls contained 70 to 75% protein, corresponding to about 14% of the protein in intact organisms. Amino acid analysis of these protein showed the existence of all common amino acids, glucosamine, and galactosamine. However, no muramic acid was detected by the methods employed.  相似文献   

6.
7.
J Wojcierowski  H Antosz  J Halliop 《Cytobios》1976,16(63-64):151-161
Physico-chemical properties and RNA synthesis in the rat liver and human lymphocytes have been compared in a nuclear system in vitro. Human lymphocytes were isolated from blood of healthy donors and of chronic lymphocytic leukaemia patients. The isolated nuclei served as the source of polymerase and template DNA. 3H-CTP was incorporated into the acid insoluble fraction linearly for 60 min. The nuclei of lymphocytes contained small amounts of RNA and protein, and the isolation procedure was complicated. Rat liver nuclei seem to be less prone to clumping at high pH values and may incorporate much more 3H-CTP. The nuclear synthesis was compared with incorporation of 3H-rU and 32P-orthophosphate into nuclear RNA of intact lymphocytes. Normal cells easily incorporated 32-P, and in contrast leukaemic cells incorporated 3H-rU to a greater extent.  相似文献   

8.
Effects of plasmolysis and spheroplast formation on deoxyribonucleic acid (DNA), ribonucleic acid (RNA), protein, and phospholipid synthesis by Escherichia coli strain THU were studied. RNA and protein synthesis were severely diminished. DNA and phospholipid synthesis were inhibited, but less so; they could be partly restored. DNA synthesis could be restored by replacing thymine in the medium with thymidine, and phospholipid synthesis, by adding back small quantities of soluble cell extract. Plasmolysis effected marked reductions in rates of growth and macro-molecule synthesis, and temporarily reduced culture viability. Plasmolysis also caused an anomalous stimulation of phospholipid synthesis. Spheroplasts and plasmolyzed cells synthesized small amounts of ribosomal RNA that sedimented normally. However, this ribosomal RNA was very inefficiently packaged to ribosome subunits. Spheroplasts were unable to carry out induced synthesis of beta-galactosidase, and plasmolyzed cells were delayed in this function. Radioautographs examined in an electron microscope showed that DNA synthesis in plasmolyzed cells and spheroplasts was performed by a substantial fraction of the culture populations. That DNA and membrane were associated in the spheroplasts used in this study was suggested by formation of M-bands containing membrane and most of the cell's DNA. The results are discussed in terms of alterations of membrane structure and conformation attending plasmolysis and spheroplasting.  相似文献   

9.
Spheroplasts were prepared from Aspergillus parasiticus NRRL 3240 using β-glucuronidase from Helix pomatia. They were osmotically fragile spherical structures which lysed when suspended in hypotonic buffers. Purity of the preparation was confirmed by phase-contrast microscopy. Maximal conversion of mycelia to spheroplasts was achieved with 48 and 72 h old cultures. Spheroplasts were metabolically active as indicated by the incorporation of labelled thymidine, uridine and leucine into DNA, RNA and proteins, respectively. A significant incorporation of [methyl-3H] thymidine into trichloroacetic acid-insoluble material suggested the presence of thymidine kinase in this organism. Spheroplasts and lysates demonstrated the ability to incorporate labelled acetate into aflatoxins. Maximum incorporation was observed in those prepared from 96 h old cultures. Lysates were more efficient in de novo aflatoxin synthesis as compared to intact mycelia and spheroplasts.  相似文献   

10.
The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. 1. Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32I protein for this synthesis. 2. Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. 3. Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. 4. The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3'-OH end of a polynucleotide chain and are thereby inhibited. Eukaryotic helix-destabilizing proteins may also have similar functional domains essential for the control of their activities.  相似文献   

11.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.  相似文献   

12.
Pentachlorophenol (PCP)-sensitive incorporation of (32)P-labeled orthophosphate ((32)P(i)) into nucleotides and nucleic acids by disrupted spheroplasts of Escherichia coli was inhibited by addition of colicin K. Incorporation by intact cells was also inhibited by a similar concentration of colicin K. Various colicin K-resistant mutants were isolated, and their ability to incorporate (32)P(i) was tested. When T6(r)-colK(r) mutants (T6 phage-resistant) and tol I mutants (T6-sensitive, colicin E-sensitive) were converted to disrupted spheroplasts, their (32)P(i)-incorporation became sensitive to colicin K. On the contrary, incorporation by disrupted spheroplasts from tol II mutants (T6-sensitive, colicin E-resistant) was fairly resistant to colicin K like that of intact cells. A modification of the cell surface of T6(r)-colK(r) mutants, caused by mutation to novobiocin-permeable, T4 phage-resistant cells, restored the sensitivity of the cells to colicin K. The modified T6(r)-colK(r) cells did not adsorb T6 phage or colicin K, indicating that the receptors for T6 phage or colicin K are not reactivated by this modification. Similar treatment of tol I mutants did not have this effect. These observations strongly suggest that colicin K can act on its target on the cell membrane if it can penetrate the cell surface to reach this target. The receptor for colicin K on the cell surface, which may be part of the T6 phage-receptor, may have some unknown function in relation to the action of colicin K in normal cells, but tends to become dispensable if the cells become permeable to colicin K.  相似文献   

13.
Spheroplasts were disrupted with 0.2% Brij 58 and the separation of intact cells, spheroplasts, disrupted spheroplasts, fragmented membrane, and supernatant was performed on a linear 40~55% sucrose gradient. About half an amount of nucleic acid components was distributed in disrupted spheroplast fractions, while only a small amount of protein components was found in these fractions.

DNA polymerase in the fragmented membrane fraction incorporated 3H-TTP more rapidly than that in the supernatant fraction for the first 5 to 6 min, and then the incorporation rate decreased, while DNA polymerase in the supernatant fraction incorporated 3H-TTP linearly up to 20 min when native DNA was used as a primer. The former required native DNA as a primer and showed little activity towards denatured DNA, while the latter incorporated 3H-TTP at a similar rate to both the primer DNA’s.

DNA polymerase of the fragmented membrane fraction synthesized various sizes of DNA from short to a size of primer when native DNA was used as a primer, while when denatured DNA was used, products were only short. DNA polymerase of the supernatant fraction synthesized various sizes of DNA when both native and denatured DNA’s were used as primers.  相似文献   

14.
The amount of ribonucleic acid (RNA), protein, and deoxyribonucleic acid (DNA) was determined in pellicle cultures of different ages of the H37Ra strain of Mycobacterium tuberculosis, grown on a synthetic medium. We found that the highest content of RNA and protein was present in 2-week-old cultures, indicating that these cells were in the logarithmic phase of growth. DNA content was highest at 1 and 2 weeks. The amount of all three compounds then decreased about 50% during the following 6 weeks. Two-week-old cells should therefore be used for preparation of the immunogenic ribosomal fraction. The optimal concentration of zinc chloride increased RNA and protein synthesis, and also improved the appearance of the pellicle growth. Two-week-old cells, which contained the largest amount of RNA and protein, immunized mice significantly better than older cells. Since protein and DNA are not involved in the production of immunity, a correlation could be made between amount of RNA and the capacity of viable H37Ra cells to immunize mice. The immunizing capacity of these cells was not affected by ribonuclease, probably because the ribonuclease did not penetrate into the whole cells.  相似文献   

15.
DNA polymerase alpha 2-primase has been purified 2750 fold from developing cherry salmon (Oncorhynchus masou) testes by the following purification steps: fractional extraction, phosphocellulose (1st), ammonium sulfate fractionation, DEAE-cellulose, phosphocellulose (2nd), hydroxylapatite and single-stranded DNA-cellulose column chromatographies. Final preparation of this enzyme has a specific activity of 107,000 units/mg protein (activated salmon sperm DNA as template-primer). DNA primase activity (rGTP dependent incorporation of labelled dGMP into poly (dC) or rNTP dependent incorporation of dNMP into M13 single-stranded DNA) was tightly associated with DNA polymerase alpha activity during all stage of this purification process. Inhibition of DNA primase activity by six kinds of 3'-deoxyribonucleotides was studied by using rNTP dependent DNA synthesis on M13 DNA as template. The inhibition constants (Ki) were larger than those of DNA-dependent RNA polymerases I and II. However, Ki/Km values were very close.  相似文献   

16.
sn-Glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli have been selected from a strain which cannot aerobically catabolize G3P. The auxotrophy resulted from loss of the biosynthetic G3P dehydrogenase (EC 1.1.1.8) or from a defective membranous G3P acyltransferase. The apparent K(m) of the acyltransferase for G3P was 11- to 14-fold higher (from about 90 mum to 1,000 to 1,250 mum) in membrane preparations from the mutants than those of the parent. All extracts prepared from revertants of the G3P dehydrogenase mutants showed G3P dehydrogenase activity, but most contained less than 10% of the wild-type level. Membrane preparations from revertants of the acyltransferase mutants had apparent K(m)'s for G3P similar to that of the parent. Strains have been derived in which the G3P requirement can be satisfied with glycerol in the presence of glucose, presumably because the glycerol kinase was desensitized to inhibition by fructose 1,6-diphosphate. Investigations on the growth and macromolecular synthesis in a G3P acyltransferase K(m) mutant revealed that upon glycerol deprivation, net phospholipid synthesis stopped immediately; growth continued for about one doubling; net ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein nearly doubled paralleling the growth curve; the rate of phospholipid synthesis assessed by labeling cells with (32)P-phosphate, (14)C-acetate, or (3)H-serine was reduced greater than 90%; the rates of RNA and DNA synthesis increased as the cells grew and then decreased as the cells stopped growing; the rate of protein synthesis showed no increase and declined more slowly than the rates of RNA and DNA synthesis when the cells stopped growing. The cells retained and gained in the capacity to synthesize phospholipids upon glycerol deprivation. These data indicate that net phospholipid synthesis is not required for continued macromolecular synthesis for about one doubling, and that the rates of these processes are not coupled during this time period.  相似文献   

17.
Assembly protein was isolated by DEAE cellulose chromatography from disrupted R17 bacteriophage and reconstituted with purified R17 phage RNA. Following reconstitution, 125I labeled assembly protein co-sediments with 27S R17 phage RNA in a sucrose gradient. SDS-polyacrylamide gel analysis of the 27S 125I labeled protein-RNA complex confirmed that assembly protein was the only phage protein associated with the RNA. The specific infectivity (PFU/μg RNA) of the R17 phage RNA-assembly protein complex was 35-fold greater than that of R17 phage RNA when assayed on Escherichia coli spheroplasts. Infectivity of both preparations was destroyed by treatment with pancreatic ribonuclease A. Furthermore, the assembly protein-RNA complex was infectious for intact cells whereas phage RNA was not infectious. Infectivity of this 27S complex for intact cells was totally eliminated by pretreatment with ribonuclease.  相似文献   

18.
19.
1. The addition of human liver extract to HeLa cells induces a reversible inhibition of the incorporation of [3H] thymidine into the DNA, [3H] uridine into the RNA, and 14C-labelled amino acids into the protein of HeLa cells. The inhibitory effects appear after treatment for 1 h and reach a maximum after 4-8 h. These effects do not depend on a defective precursor penetration, isotopic dilution or degradation of labelled precursor (thymidine-degrading enzymes were inactivated by the addition of unlabelled thymine), reduced activity of thymidine and uridine kinase, medium impairment, or an impairment of the cell-membrane function. 2. The nucleic acid synthesis-inhibiting activity of the extract seems to be dependent on cellular protein synthesis but independent of RNA synthesis which indicates that the inhibitors act in an indirect way. Furthermore, the inhibitors seem to lack the tissue-specific character of chalones. 3. The extract contains separate inhibitors of DNA, RNA and protein synthesis. These inhibitors were found to have different physical-chemical characteristics and to be macromolecules with a protein or conjugated protein character (mol. wt. approx. 90 000). 4. The possibility that the activity of the high molecular weight inhibitors resides in low molecular weight factors (bound to protein carriers) was tested: No true low molecular weight inhibitors could be liberated by extraction with trichloroacetic acid/organic solvents or by dialysis/enzymatic treatments. Nucleosides such as thymidine, uridine, and cytidine, however, were liberated and could be shown to interfere with the uptake of [3H] thymidine/[3H] uridine.  相似文献   

20.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号