首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzyme that diverts protoporphyrin IX from heme biosynthesis toward the bacteriochlorophyll biosynthetic pathway by inserting Mg(2+) to form Mg-protoporphyrin IX. Mg chelatase is composed of three subunits that are encoded by the bchI, bchD, and bchH genes in R. capsulatus. We report that BchH is the rate-limiting component of Mg chelatase activity in cell extracts. BchH binds protoporphyrin IX, and BchH that has been expressed and purified from Escherichia coli is red in color due to the bound protoporphyrin IX. Recombinant BchH is rapidly inactivated by light in the presence of O(2), and the inactivation results in the formation of a covalent adduct between the protein and the bound protoporphyrin IX. When photosynthetically growing R. capsulatus cells are transferred to aerobic conditions, Mg chelatase is rapidly inactivated, and BchH is the component that is most rapidly inactivated in vivo when cells are exposed to aerobic conditions. The light- and O(2)-stimulated inactivation of BchH could account for the rapid inactivation of Mg chelatase in vivo and provide a mechanism for inhibiting the synthesis of bacteriochlorophyll during adaptation of photosynthetically grown cells to aerobic conditions while still allowing heme synthesis to occur for aerobic respiration.  相似文献   

2.
The genes encoding the three Mg chelatase subunits, ChlH, ChlI and ChlD, from the cyanobacterium Synechocystis PCC6803 were all cloned in the same pET9a-based Escherichia coli expression plasmid, forming an artificial chlH-I-D operon under the control of the strong T7 promoter. When a soluble extract from IPTG-induced E. coli cells containing the pET9a-ChlHID plasmid was assayed for Mg chelatase activity in vitro, a high activity was obtained, suggesting that all three subunits are present in a soluble and active form. The chlM gene of Synechocystis PCC6803 was also cloned in a pET-based E. coli expression vector. Soluble extract from an E. coli strain expressing chlM converted Mg-protoporphyrin IX to Mg-protoporphyrin monomethyl ester, demonstrating that chlM encodes the Mg-protoporphyrin methyltransferase of Synechocystis. Co-expression of the chlM gene together with the chlH-I-D construct yielded soluble protein extracts which converted protoporphyrin IX to Mg-protoporphyrin IX monomethyl ester without detectable accumulation of the Mg-protoporphyrin IX intermediate. Thus, active Mg chelatase and Mg-protoporphyrin IX methyltransferase can be coupled in E. coli extracts. Purified ChlI, -D and -H subunits in combination with purified ChlM protein were subsequently used to demonstrate in vitro that a molar ratio of ChlM to ChlH of 1 to 1 results in conversion of protoporphyrin IX to Mg-protoporphyrin monomethyl ester without significant accumulation of Mg-protoporphyrin.  相似文献   

3.
We provide in vivo genetic and in vitro biochemical evidence that RegA directly regulates bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus. beta-Galactosidase expression assays with a RegA-disrupted strain containing reporter plasmids for Mg-protoporphyrin IX monomethyl ester oxidative cyclase (bchE), Mg-protoporphyrin IX chelatase (bchD), and phytoene dehydrogenase (crtI) demonstrate RegA is responsible for fourfold anaerobic induction of bchE, threefold induction of bchD, and twofold induction of crtI. Promoter mapping studies, coupled with DNase I protection assays, map the region of RegA binding to three sites in the bchE promoter region. Similar studies at the crtA and crtI promoters indicate that RegA binds to a single region equidistant from these divergent promoters. These results demonstrate that RegA is directly responsible for anaerobic induction of bacteriochlorophyll biosynthesis genes bchE, bchD, bchJ, bchI, bchG, and bchP and carotenoid biosynthesis genes crtI, crtB, and crtA.  相似文献   

4.
5.
Three open reading frames in the Rhodobacter capsulatus photosynthesis gene cluster, designated F0, F108, and F1025, were disrupted by site-directed mutagenesis. Mutants bearing insertions in these reading frames were defective in converting protoporphyrin IX to magnesium-protoporphyrin monomethyl ester, protochlorophyllide to chlorophyllide a, and magnesium-protoporphyrin monomethyl ester to protochlorophyllide, respectively. These results demonstrate that the genes examined most likely encode enzyme subunits that catalyze steps common to plant and bacterial tetrapyrrole photopigment biosynthetic pathways. The open reading frames were found to be part of a large 11-kilobase operon that encodes numerous genes involved in early steps of the bacteriochlorophyll a biosynthetic pathway.  相似文献   

6.
1. Magnesium-protoporphyrin chelatase activity, previously shown in whole cells of Rhodopseudomonas spheroides, could not be demonstrated in cell-free extracts prepared in different ways, although spheroplasts retained moderate activity. Slight activity was detected also in whole cells of Rhodospirillum rubrum. 2. The effects on the activity of the enzyme of inhibitors of electron and energy transfer were studied in whole cells of Rps. spheroides. Amytal, rotenone, azide and cyanide inhibited at low pO(2) in the dark but not under anaerobic conditions in the light. Antimycin A and 2-heptyl-4-hydroxyquinoline N-oxide, as well as uncouplers and oligomycin, inhibited under all environmental conditions. 3. The effects on magnesium chelatase activity of intermediates of the tricarboxylic acid cycle, of thenoyltrifluoroacetone, of a number of artificial electron donors or acceptors, of various quinones and of the oxidation-reduction indicator dyes Benzyl Viologen and Methyl Viologen are described. 4. It was concluded that electron transport between a b-type and a c-type cytochrome as well as associated energy conservation and transformation reactions were essential for activity. There was also a specific requirement for ATP. 5. Exogenous protoporphyrin and magnesium protoporphyrin monomethyl ester were incorporated into bacteriochlorophyll or late precursors by whole cells. 6. Evidence is presented that the insertion of magnesium was the only step inhibited by oxygen in the biosynthetic pathway between protoporphyrin and bacteriochlorophyll.  相似文献   

7.
The bacteriochlorophyll biosynthesis gene, bchM, from Rhodobacter capsulatus was previously believed to code for a polypeptide involved in formation of the cyclopentone ring of protochlorophyllide from Mg-protoporphyrin IX monomethyl ester. In this study, R. capsulatus bchM was expressed in Escherichia coli and the gene product was subsequently demonstrated by enzymatic analysis to catalyze methylation of Mg-protoporphyrin IX to form Mg-protoporphyrin IX monomethyl ester. Activity required the substrates Mg-protoporphyrin IX and S-adenosyl-L-methionine. 14C-labeled product was formed in incubations containing 14C-methyl-labeled S-adenosyl-L-methionine. On the basis of these and previous results, we also conclude that the bchH gene, which was previously reported to code for Mg-protoporphyrin IX methyltransferase, is most likely involved in the Mg chelation step.  相似文献   

8.
A new example of superoperonal gene arrangement has been documented in the Rhodobacter capsulatus photosynthetic gene cluster. The promoter for the operon initiated by the bchI gene is embedded within an upstream operon for carotenoid synthesis. The stop codon for the crtA gene, the only gene in the first operon, overlaps the start codon of the downstream bchI gene. As a consequence of this overlap, the promoter(s) for the bch operon must be located within the crtA structural gene. The bchI gene is shown here for the first time to be required for the conversion of protoporphyrin IX to subsequent intermediates in bacteriochlorophyll biosynthesis.  相似文献   

9.
During biosynthesis of chlorophyll, Mg(2+) is inserted into protoporphyrin IX by magnesium chelatase. This enzyme consists of three different subunits of approximately 40, 70 and 140 kDa. Seven barley mutants deficient in the 40 kDa magnesium chelatase subunit were analysed and it was found that this subunit is essential for the maintenance of the 70 kDa subunit, but not the 140 kDa subunit. The 40 kDa subunit has been shown to belong to the family of proteins called "ATPases associated with various cellular activities", known to form ring-shaped oligomeric complexes working as molecular chaperones. Three of the seven barley mutants are semidominant mis-sense mutations leading to changes of conserved amino acid residues in the 40 kDa protein. Using the Rhodobacter capsulatus 40 and 70 kDa magnesium chelatase subunits we have analysed the effect of these mutations. Although having no ATPase activity, the deficient 40 kDa subunit could still associate with the 70 kDa protein. The binding was dependent on Mg(2+) and ATP or ADP. Our study demonstrates that the 40 kDa subunit functions as a chaperon that is essential for the survival of the 70 kDa subunit in vivo. We conclude that the ATPase activity of the 40 kDa subunit is essential for this function and that binding between the two subunits is not sufficient to maintain the 70 kDa subunit in the cell. The ATPase deficient 40 kDa proteins fail to participate in chelation in a step after the association of the 40 and 70 kDa subunits. This step presumably involves a conformational change of the complex in response to ATP hydrolysis.  相似文献   

10.
Green bacteria synthesize several types of (bacterio)chlorophylls for the assembly of functional photosynthetic reaction centers and antenna complexes. A distinctive feature of green bacteria compared with other photosynthetic microbes is that their genomes contain multiple homologs of the large subunit (BchH) of the magnesium chelatase which is a three-subunit enzyme complex (BchH, BchD, and BchI) that inserts magnesium into protoporphyrin IX as the first committed step of (bacterio)chlorophyll biosynthesis. There is speculation that the additional BchH homologs may regulate the biosynthesis of each type of chlorophyll, although the biochemical properties of the different magnesium chelatase complexes from a single species of green bacteria have not yet been compared. In this study, we investigated the activities of all three chelatase complexes from the green sulfur bacterium Chlorobaculum tepidum and interactions with the next enzyme in the pathway, magnesium protoporphyrin IX methyltransferase (BchM). Although all three chelatase complexes insert magnesium into protoporphyrin IX, the activities range by a factor of 10(5). Further, there are differences in the interactions between the BchH homologs and BchM; two of the subunits increase the methyltransferase activity by 30-60%, and the third decreases it by 30%. Expression of the chelatase complexes alone and together with BchM in Escherichia coli overproducing protoporphyrin IX suggests that the chelatase is the rate-limiting enzyme. We observed that BchM uses protoporphyrin IX without bound metal as a substrate. Our results conflict with expectations generated by previous gene inactivation studies and suggest a complex regulation of chlorophyll biosynthesis in green bacteria.  相似文献   

11.
Activity of magnesium chelatase was studied in green barley leaves treated with 5-aminolevulinic acid (ALA). After this treatment, leaves accumulated excessive amounts of porphyrinic precursors of chlorophyll : protoporphyrin IX (PP), magnesium-protoporphyrin IX (MgPP), its monomethyl ester (MgPPE), and protochlorophyllide. The enzyme activity was found to be inversely dependent on the amount of MgPP formed from exogenous ALA. A conclusion was drawn about the existence of a mechanism for the regulation of the enzyme activity in vivo via its inhibition by the reaction product.  相似文献   

12.
Heme and bacteriochlorophyll a (BChl) biosyntheses share the same pathway to protoporphyrin IX, which then branches as follows. Fe(2+) chelation into the macrocycle by ferrochelatase results in heme formation, and Mg(2+) addition by Mg-chelatase commits the porphyrin to BChl synthesis. It was recently discovered that a bchD (Mg-chelatase) mutant of Rhodobacter sphaeroides produces an alternative BChl in which Mg(2+) is substituted by Zn(2+). Zn-BChl has been found in only one other organism before, the acidophilic Acidiphilium rubrum. Our objectives in this work on the bchD mutant were to 1) elucidate the Zn-BChl biosynthetic pathway in this organism and 2) understand causes for the low amounts of Zn-BChl produced. The bchD mutant was found to contain a Zn-protoporphyrin IX pool, analogous to the Mg-protoporphyrin IX pool found in the wild type strain. Inhibition of ferrochelatase with N-methylprotoporphyrin IX caused Zn-protoporphyrin IX and Zn-BChl levels to decline by 80-90% in the bchD mutant, whereas in the wild type strain, Mg-protoporphyrin IX and Mg-BChl levels increased by 170-240%. Two early metabolites of the Zn-BChl pathway were isolated from the bchD mutant and identified as Zn-protoporphyrin IX monomethyl ester and divinyl-Zn-protochlorophyllide. Our data support a model in which ferrochelatase synthesizes Zn-protoporphyrin IX, and this metabolite is acted on by enzymes of the BChl pathway to produce Zn-BChl. Finally, the low amounts of Zn-BChl in the bchD mutant may be due, at least in part, to a bottleneck upstream of the step where divinyl-Zn-protochlorophyllide is converted to monovinyl-Zn-protochlorophyllide.  相似文献   

13.
Magnesium chelatase and magnesium protoporphyrin IX monomethyl ester (oxidative) cyclase activities were both sensitive to inhibition by p-chloromercuribenzoate in intact, developing cucumber (Cucumis sativus L. var Beit Alpha) chloroplasts. Magnesium chelatase was also sensitive to the membrane-impermeable mercurial p-chloromercuribenzene sulfonate (PCMBS), while cyclase activity was only slightly sensitive. When the plastids were pretreated with PCMBS, triosephosphate dehydrogenase activity was inhibited very slightly, indicating that PCMBS does not readily penetrate through the chloroplast envelope. These results suggest that magnesium chelatase is located in the chloroplast envelope, while the cyclase is located deeper within the chloroplast.  相似文献   

14.
Gun4 has been implicated in a developmental signaling pathway between the chloroplast and the nucleus involving magnesium protoporphyrin IX (MgP(IX)), the first dedicated intermediate in the chlorophyll biosynthetic pathway. Here we present the crystal structure of Thermosynechococcus elongatus Gun4 at 1.5 A, describe the binding affinities of Gun4 for substrate and product porphyrin molecules, and identify a likely (Mg)P(IX) binding site on the protein. Kinetic analyses show that Gun4 dramatically increases the efficiency of transformation of porphyrin substrate to metalloporphyrin product and that it also reduces the threshold Mg2+ concentration required for activity at low porphyrin concentration. Gun4 therefore controls magnesium chelatase at physiologically significant Mg2+ concentrations and likely acts as a molecular switch in vivo so that in its absence magnesium chelatase is inactive. This mechanism could allow Gun4 to mediate magnesium protoporphyrin levels both for chlorophyll biosynthesis and for signaling to the nucleus.  相似文献   

15.
A continuous spectroscopic assay has been developed for magnesium protoporphyrin monomethyl ester oxidative cyclase, which records either the dark formation of both free and protein-bound magnesium phaeoporphyrin or, following flash illumination, its corresponding chlorin. The properties of the enzyme were studied in wheat etioplasts. When plastids were pre-illuminated in the presence of NADPH all endogenous protochlorophyllide was converted into chlorophyllide and the product of dark incubation with magnesium protoporphyrin monomethyl ester was protein-bound magnesium 2-vinyl phaeoporphyrin a5 monomethyl ester with either a vinyl or an ethyl group at position 4 of the macrocycle alone. Rates of chlorin production from magnesium protoporphyrin monomethyl ester (up to 1240 pmol/h per mg of protein) were adequate to support known rates of plant chlorophyll synthesis. The enzyme required NADPH and O2 and had an approximate Km of 0.5 microM for magnesium protoporphyrin IX monomethyl ester. Lipid-soluble metal-complexing agents inhibited enzyme activity: hydrophilic agents were ineffective. The strong inhibition of mycobactin suggested the involvement of iron ions. Zinc protoporphyrin monomethyl ester, but not copper or nickel or metal-free protoporphyrin monomethyl esters, was a substrate; magnesium protoporphyrin dimethyl ester was inhibitory. The activity of the enzyme was unchanged by prior greening of the plants. The activity in isolated etioplasts was very dependent upon intactness of the plastid structure.  相似文献   

16.
Sawicki A  Willows RD 《The FEBS journal》2010,277(22):4709-4721
Substrate channeling between the enzymatic steps in the (bacterio)chlorophyll biosynthetic pathway catalyzed by magnesium chelatase (BchI/ChlI, BchD/ChlD and BchH/ChlH subunits) and S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase (BchM/ChlM) has been suggested. This involves delivery of magnesium-protoporphyrin IX from the BchH/ChlH subunit of magnesium chelatase to BchM/ChlM. Stimulation of BchM/ChlM activity by BchH/ChlH has previously been shown, and physical interaction of the two proteins has been demonstrated. In plants and cyanobacteria, there is an added layer of complexity, as Gun4 serves as a porphyrin (protoporphyrin IX and magnesium-protoporphyrin IX) carrier, but this protein does not exist in anoxygenic photosynthetic bacteria. BchJ may play a similar role to Gun4 in Rhodobacter, as it has no currently assigned function in the established pathway. Purified recombinant Rhodobacter capsulatus BchJ and BchM were found to cause a shift in the equilibrium amount of Mg-protoporphyrin IX formed in a magnesium chelatase assay. Analysis of this shift revealed that it was always in a 1 : 1 ratio with either of these proteins and the BchH subunit of the magnesium chelatase. The establishment of the new equilibrium was faster with BchM than with BchJ in a coupled magnesium chelatase assay. BchJ bound magnesium-protoporphyrin IX or formed a ternary complex with BchH and magnesium-protoporphyrin IX. These results suggest that BchJ may play a role as a general magnesium porphyrin carrier, similar to one of the roles of GUN4 in oxygenic organisms.  相似文献   

17.
18.
N-Methylprotoporphyrin dimethyl ester inhibits ferrochelatase in isolated membranes of Rhodopseudomonas sphaeroides at low concentrations (around 10 nm). Full inhibition developed after a short lag phase. The inhibition was non-competitive with porphyrin substrate. Addition of inhibitor to growing cultures of Rps. sphaeroides caused a decrease (near 40%) in cytochrome content and a severe inhibition of ferrochelatase; the excretion of haem into the medium by cell suspensions was also severely inhibited. The addition of N-methylprotoporphyrin dimethyl ester to suspensions of photosynthetically competent Rps. sphaeroides Ga caused excretion of Mg-protoporphyrin monomethyl ester. When added to mutants V3 and O1, magnesium divinylphaeoporphyrin a5 monomethyl ester and 2-devinyl-2-hydroxyethylphaeophorbide a were excreted, with maximum effect at around 3 microM-inhibitor in the medium. The results are interpreted to suggest that the inhibitor decreases concentration of intracellular haem, which normally controls the activity of 5-aminolaevulinate synthetase. Unregulated activity of this enzyme leads to overproduction of protoporphyrin, which is diverted to the bacteriochlorophyll pathway. Further control operates at magnesium protoporphyrin ester conversion in normal cells.  相似文献   

19.
Jaschke PR  Beatty JT 《Biochemistry》2007,46(43):12491-12500
A Rhodobacter sphaeroides bchD (magnesium chelatase) mutant was studied to determine the properties of its photosystem in the absence of bacteriochlorophyll (BChl). Western blots of reaction center H, M, and L (RC H/M/L) proteins from mutant membranes showed levels of 12% RC H, 32% RC L, and 46% RC M relative to those of the wild type. Tricine-SDS-PAGE revealed 52% light-harvesting complex alpha chain and 14% beta chain proteins compared to those of the wild type. Pigment analysis of bchD cells showed the absence of BChl and bacteriopheophytin (BPhe), but zinc bacteriochlorophyll (Zn-BChl) was discovered. Zn-BChl binds to light-harvesting 1 (LH1) and 2 (LH2) complexes in place of BChl in bchD membranes, with a LH2:LH1 ratio resembling that of wild-type cells under BChl-limiting conditions. Furthermore, the RC from the bchD mutant contained Zn-BChl in the special pair and accessory BChl binding sites, as well as carotenoid and quinone, but BPhe was absent. Comparison of the bchD mutant RC absorption spectrum to that of Acidiphilium rubrum, which contains Zn-BChl in the RC, suggests the RC protein environment at L168 contributes to A. rubrum special pair absorption characteristics rather than solely Zn-BChl. We speculate that Zn-BChl is synthesized via the normal BChl biosynthetic pathway, but with ferrochelatase supplying zinc protoporphyrin IX for enzymatic steps following the nonfunctional magnesium chelatase. The absence of BPhe in bchD cells is likely related to Zn2+ stability in the chlorin macrocycle and consequently high resistance of Zn-BChl to pheophytinization (dechelation). Possible agents prevented from dechelating Zn-BChl include the RC itself, a hypothetical dechelatase enzyme, and spontaneous processes.  相似文献   

20.
Karger GA  Reid JD  Hunter CN 《Biochemistry》2001,40(31):9291-9299
Magnesium protoporphyrin chelatase catalyzes the insertion of a Mg(2+) ion into protoporphyrin IX, which can be considered as the first committed step of (bacterio)chlorophyll synthesis. In the present work, the Mg chelatase H subunits from both Synechocystis and Rhodobacter sphaeroides were studied because of the differing requirements of these organisms for modified cyclic tetrapyrroles. Deuteroporphyrin was shown to be a substrate for Mg chelatase. Analytical HPLC gel filtration was used to show that an H-deuteroporphyrin complex can be reconstituted by incubating the magnesium chelatase H subunit with a molar excess of deuteroporphyrin and that these complexes are monomers. The binding process occurs in the absence of Mg(2+) or ATP or the I or D subunits of Mg chelatase. The emission from Trp residues in the H subunit is partly quenched when deuteroporphyrin is bound. Quantitative analysis of Trp fluorescence quenching led to determination of the K(d) values for deuteroporphyrin binding to BchH from Rb. sphaeroides and ChlH from Synechocystis, which are 1.22 +/- 0.42 microM and 0.53 +/- 0.12 microM for ChlH and BchH, respectively. In the case of ChlH, but not BchH, the K(d) increased 4-fold in the presence of MgATP(2-). Red shifts in absorbance and excitation peaks were observed in the B band of the bound porphyrin in comparison with deuteroporphyrin in solution, as well as reduced yield and red shifts of up to 8 nm in fluorescence emission. These alterations are consistent with a slightly deformed nonplanar conformation of the bound porphyrin. Mg deuteroporphyrin, the product of the Mg chelation reaction, was shown to form a complex with either ChlH or BchH; in each case the K(d) for Mg deuteroporphyrin is similar to that for deuteroporphyrin. The implications of the H-Mg protoporphyrin interaction for the next enzyme in the chlorophyll biosynthetic pathway, Mg protoporphyrin methyltransferase, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号