首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PsbH protein belongs to a group of small protein subunits of photosystem II (PSII) complex. This protein is predicted to have a single transmembrane helix and it is important for the assembly of the PSII complex as well as for the proper function at the acceptor side of PSII. To identify the location of the PsbH subunit, the PSII complex with His-tagged PsbH protein was isolated from the cyanobacterium Synechocystis sp. PCC 6803 and labeled by Ni(2+)-nitrilo triacetic acid Nanogold. Electron microscopy followed by single particle image analysis identified the location of the labeled His-tagged PsbH protein at the periphery of the dimeric PSII complex. These results indicate that the N terminus of the PsbH protein is located at the stromal surface of the PSII complex and close to the CP47 protein.  相似文献   

2.
Scanning tunnelling microscopy of intact D1/D2/CP47/CP43 photosystem 2 (PS2) core complexes and CP43-deleted D1/D2/CP47 core complexes shows definitively that the CP43 subunits reside at the ends of the dimeric core complex. The CP43-removal procedure produces CP43-deleted cores with minimal conformational distortion to the D1/D2/CP47 residual core complex. There was excellent agreement between the X-ray and STM structures for the intact core complex, and between the STM image for the CP43-deleted core complex and the X-ray model with the components assigned to CP43 omitted.  相似文献   

3.
Here we describe the first 3D structure of the photosystem II (PSII) supercomplex of higher plants, constructed by single particle analysis of images obtained by cryoelectron microscopy. This large multisubunit membrane protein complex functions to absorb light energy and catalyze the oxidation of water and reduction of plastoquinone. The resolution of the 3D structure is 24 A and emphasizes the dimeric nature of the supercomplex. The extrinsic proteins of the oxygen-evolving complex (OEC) are readily observed as a tetrameric cluster bound to the lumenal surface. By considering higher resolution data, obtained from electron crystallography, it has been possible to relate the binding sites of the OEC proteins with the underlying intrinsic membrane subunits of the photochemical reaction center core. The model suggests that the 33 kDa OEC protein is located towards the CP47/D2 side of the reaction center but is also positioned over the C-terminal helices of the D1 protein including its CD lumenal loop. In contrast, the model predicts that the 23/17 kDa OEC proteins are positioned at the N-terminus of the D1 protein incorporating the AB lumenal loop of this protein and two other unidentified transmembrane helices. Overall the 3D model represents a significant step forward in revealing the structure of the photosynthetic OEC whose activity is required to sustain the aerobic atmosphere on our planet.  相似文献   

4.
T Ono  S Izawa  Y Inoue 《Biochemistry》1992,31(33):7648-7655
Depletion of functional Ca2+ from photosystem (PS) II membranes impairs O2 evolution. Redox properties of the Mn cluster as probed by thermoluminescence were modified differently in Ca(2+)-depleted PSII depending on the procedure for Ca2+ extraction. Ca2+ depletion by low-pH treatment gave rise to an abnormally modified S2 state exhibiting a thermoluminescence band with elevated peak temperature accompanied by a marked upshift in threshold temperature for its formation, whereas Ca2+ depletion by NaCl washing in the light followed by the addition of EDTA could generate a similarly modified S2 state only when the Ca(2+)-depleted PSII was reconstituted with the 24-kDa extrinsic proteins. These results indicated that manifestation of the abnormal properties of the Ca(2+)-depleted S2 state is significantly contributed by the association of the 24-kDa extrinsic protein to PSII. It was inferred that the 24-kDa extrinsic protein regulates the structure and function of the Mn cluster in the absence of functional Ca2+ through a conformational modulation of the intrinsic protein(s) that bind(s) both Mn and Ca. Features of the extrinsic protein-dependent modulation of the Mn cluster were discussed in relation to the function of Ca2+ in O2 evolution.  相似文献   

5.
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.  相似文献   

6.
We used the Stern-Volmer method to analyze the mercury fluorescence quenching effect in the green alga Dunaliella tertiolecta. To this end, we introduced a new modification of the Stern-Volmer equation on the basis of the Lineweaver-Burk analysis used to characterize allosteric enzyme activity. This modification was useful to determine the Stern-Volmer constant, the parameter indicating the fraction of PSII fluorescence susceptible to the mercury quenching effect (Fs), and to estimate the apparent number of mercury binding sites (Napp = 3.72) on PSII which affect the variable fluorescence. This value of Napp indicates the possibility of four mercury binding sites in the PSII complex. We suggested that this may be related to the mercury inhibition of the oxygen-evolving complex containing four Mn active sites.  相似文献   

7.
A Boussac  A W Rutherford 《Biochemistry》1992,31(33):7441-7445
The radical formed as the formal S3 charge storage state in Ca(2+)-depleted photosystem II and detected as a split EPR signal was previously assigned to an oxidized histidine radical on the basis of its UV spectrum. In a recent paper [Hallahan, B. J., Nugent, J. H. A., Warden, J. T., & Evans, M. C. W. (1992) Biochemistry 31, 4562-4573], this assignment was challenged, and it was suggested that the signal arises instead from the well-known tyrosine radical Tyrz., the electron carrier between the photooxidized chlorophyll and the Mn cluster. Here, we provide evidence that the measurements of the Tyr., on which the new interpretation was based, are artifactual due to the use of saturating microwave powers. Other than a relaxation-enhancement effect, the formation of the split S3 signal is accompanied by no change in the Tyr. signal. Although essentially unrelated to the origin of the S3 radical, several other experimental and interpretational problems in the work of Hallahan et al. (1992) are pointed out and rationalized. For example, the inability of Hallahan et al. (1992) to observe the split S3 signal in samples containing DCMU or without a chelator, in contrast to our observations, is attributed to a number of technical problems including the incomplete inhibition of the enzyme. We thus conclude that the assignment of the split S3 signal as His., although not proven, remains the most reasonable on the basis of current data.  相似文献   

8.
Inhibitory treatment by acetate, followed by illumination and rapid freezing, is known to trap the S(2)Y(Z)(*) state of the O(2)-evolving complex (OEC) in photosystem II (PS II). An EPR spectrum of this state exhibits broad split signals due to the interaction of the tyrosyl radical, Y(Z)(*), with the S = 1/2 S(2) state of the Mn(4) cluster. We present a novel approach to analyze S(2)Y(Z)(*) spectra of one-dimensionally (1-D) oriented acetate-inhibited PS II membranes to determine the magnitude and relative orientation of the S(2)Y(Z)(*) dipolar vector within the membrane. Although there exists a vast body of EPR data on isolated spins in oriented membrane sheets, the present study is the first of its kind on dipolar-coupled electron spin pairs in such systems. We demonstrate the feasibility of the technique and establish a rigorous treatment to account for the disorder present in partially oriented 1-D membrane preparations. We find that (i) the point-dipole distance between Y(Z)(*) and the Mn(4) cluster is 7.9 +/- 0.2 A, (ii) the angle between the interspin vector and the thylakoid membrane normal is 75 degrees, (iii) the g(z)()-axis of the Mn(4) cluster is 70 degrees away from the membrane normal and 35 degrees away from the interspin vector, and (iv) the exchange interaction between the two spins is -275 x 10(-)(4) cm(-)(1), which is antiferromagnetic. Due to the sensitivity of EPR line shapes of oriented spin-coupled pairs to the interspin distance, the present study imposes a tighter constraint on the Y(Z)-Mn(4) point-dipole distance than obtained from randomly oriented samples. The geometric constraints obtained from the 1-D oriented sample are combined with published models of the structure of Mn-depleted PS II to propose a location of the Mn(4) cluster. A structure in which Y(Z) is hydrogen bonded to a manganese-bound hydroxide ligand is consistent with available data and favors maximal orbital overlap between the two redox center that would facilitate direct electron- and proton-transfer steps.  相似文献   

9.
PsbW is a nuclear-encoded protein located in the thylakoid membrane of the chloroplast. Studies in higher plants have provided substantial evidence that PsbW is a core component of photosystem II. However, recent data have been presented to suggest that PsbW is also a subunit of photosystem I. Such a sharing of subunits between the two photosystems would represent a novel phenomenon. To investigate this, we have cloned and characterized the psbW gene from the green alga Chlamydomonas reinhardtii. The gene is split by five introns and encodes a polypeptide of 115 residues comprising the 6.1 kDa mature PsbW protein preceded by a 59 amino acid bipartite transit sequence. Using antibodies raised to PsbW we have examined: (1) C. reinhardtii mutants lacking either photosystem and (2) purified photosystem preparations. We find that PsbW is a subunit of photosystem II, but not photosystem I.  相似文献   

10.
(1) To analyze the photoelectron flow related to photosystemII, particle II preparation, i.e., the chloroplast fragmenthaving only photosystem II activity, proved to be far betterthan the generally used chloroplast preparations having activitiesof both PS-I and PS-II. (2) By simultaneous measurements ofthe activities of O2 evolution and DPIP- and ferricyanide photoreductionusing variously-treated particle II preparations, it was foundthat a noticeable activity of ferricyanide photoreduction wasstill observed, though the former two activities were completelylost in the course of treatments such as Tris-treatment, pre-illuminationand aging. (3) Besides this, differences were found betweenferricyanide- and DPIP-photoreduction in respect to susceptibilityto CCCP, availability of artificial electron donor, and theeffect of chloride addition. However, both photo-reductionswere equally inactivated by heat-treatment and addition of DCMU.(4) To explain the observed distinctions between DPIP and ferricyanidein their mode of action as electron acceptor for PS-II, a schemesuggesting the involvement of two light reactions in PS-II isproposed and the electron flow near PS-II is discussed. 1 This work has been supported by Grants from the Ministry ofEducation (Nos. 8425- 70-'71; 4970l4-'69-'71), which are gratefullyacknowledged here. (Received January 12, 1972; )  相似文献   

11.
NaCl/EGTA-washing of photosystem II (PS-II) results in the removal of Ca2+ and the inhibition of oxygen evolution. Two new EPR signals were observed in such samples: a stable and modified S2 multiline signal and an S3 signal [(1989) Biochemistry 28, 8984-8989]. Here, we report what factors are responsible for the modifications of the S2 signal and the observation of the S3 signal. The following results were obtained. (i) The stable, modified, S2 multiline signal can be induced by the addition of high concentrations of EGTA or citrate to PS-II membranes which are already inhibited by Ca(2+)-depletion. (ii) The carboxylic acids act in the S3-state, are much less effective in S2 and have no effect in the S1-state. (iii) The extrinsic polypeptides (17- and 23-kDa) are not required to observe either the modified S2 signal or the S3 signal. However, they do influence the splitting and the lifetime of the S3 signal, and they seem to have a slight influence on the hyperfine pattern of the S2 signal. (iv) The S3 signal can be observed in Ca(2+)-depleted PS-II which does not exhibit the modified multiline signal. Then, it is proposed that formation of histidine radical during the S2 to S3 transition in Ca(2+)-depleted PS-II [(1990) Nature 347, 303-306] also occurs in functional PS-II.  相似文献   

12.
The two [4Fe-4S] clusters F(A) and F(B) are the terminal electron acceptors of photosystem I (PSI) that are bound by the stromal subunit PsaC. Soluble ferredoxin (Fd) binds to PSI via electrostatic interactions and is reduced by the outermost iron-sulfur cluster of PsaC. We have generated six site-directed mutants of the green alga Chlamydomonas reinhardtii in which residues located close to the iron-sulfur clusters of PsaC are changed. The acidic residues Asp(9) and Glu(46), which are located one residue upstream of the first cysteine liganding cluster F(B) and F(A), respectively, were changed to a neutral or a basic amino acid. Although Fd reduction is not affected by the E46Q and E46K mutations, a slight increase of Fd affinity (from 1.3- to 2-fold) was observed by flash absorption spectroscopy for the D9N and D9K mutant PSI complexes. In the FA(2) triple mutant (V49I/K52T/R53Q), modification of residues located next to the F(A) cluster leads to partial destabilization of the PSI complex. The electron paramagnetic resonance properties of cluster F(A) are affected, and a 3-fold decrease of Fd affinity is observed. The introduction of positively charged residues close to the F(B) cluster in the FB(1) triple mutant (I12V/T15K/Q16R) results in a 60-fold increase of Fd affinity as measured by flash absorption spectroscopy and a larger amount of PsaC-Fd cross-linking product. The first-order kinetics are similar to wild type kinetics (two phases with t((1)/(2)) of <1 and approximately 4.5 microseconds) for all mutants except FB(1), where Fd reduction is almost monophasic with t((1)/(2)) < 1 microseconds. These data indicate that F(B) is the cluster interacting with Fd and therefore the outermost iron-sulfur cluster of PSI.  相似文献   

13.
The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at both Mn nuclei. The features that distinguish the multiline from the EPR spectra of model manganese dimer complexes (additional width of the spectrum (195 mT), additional peaks (22), internal "superhyperfine" structure) are plausibly explained assuming an unusual ligand geometry at both Mn nuclei, giving rise to normally forbidden transitions from quadrupole interactions as well as hyperfine anisotropy. The fitted parameters indicate that the hyperfine and quadrupole interactions arise from Mn ions in low symmetry environments, corresponding approximately to the removal of one ligand from an octahedral geometry in both cases. For a quadrupole interaction of the magnitude indicated here to be present, the MnIII ion must be 5-coordinate and the MnIV 5-coordinate or possibly have a sixth, weakly bound ligand. The hyperfine parameters indicate a quasi-axial anisotropy at MnIII, which while consistent with Jahn-Teller distortion as expected for a d4 ion, corresponds here to the unpaired spin being in the ligand deficient, z direction of the molecular reference axis. The fitted parameters for MnIV are very unusual, showing a high degree of anisotropy not expected in a d3 ion. This degree of anisotropy could be qualitatively accounted for by a histidine ligand providing pi backbonding into the metal dxy orbital, together with a weakly bound or absent ligand in the x direction.  相似文献   

14.
15.
One of the major conceptual advances in the understanding of the pathogenesis of heart failure has been the insight that myocardial dysfunction and heart failure may progress as the result of the sustained over-expression of nitric oxide (NO) metabolites locally and in blood modulated by inducible nitric oxide synthase (iNOS). This by virtue of their deleterious effects is sufficient to contribute to disease progression by provoking left ventricular (LV) remodeling, hypertrophy and progressive LV dysfunction. Recently, tumor necrosis factor-alpha (TNF-alpha) has also been identified in this setting of heart failure. Analogous to the situation with NO, the over-expression of TNF-alpha is sufficient to contribute to disease progression in heart failure phenotype. Although important interactions between TNF-alpha and the NO have been recognized in the cardiovascular system for over a decade, the nature and importance of the interactions between these biologically active molecules in cardiac hypertrophy has become apparent only in the recent times. Therefore, we focused on the prevailing updated evidence which suggests that there is a functionally significant cross-regulation between NO and TNF-alpha signaling in blood thus playing a part in cardiac hypertrophy and failure. The discussions presented here will have a bearing on the therapeutic potential via inhibitors of these pathways in reducing cardiomyocyte hypertrophy and the LV dysfunction.  相似文献   

16.
Hwang HJ  Burnap RL 《Biochemistry》2005,44(28):9766-9774
The assembly of Mn(2+) ions into the H(2)O oxidation complex (WOC) of the photosystem II (PSII) reaction center is a light-driven process, termed photoactivation. According to the "two-quantum" model, photoactivation involves two light-driven charge separations coupled to the photooxidation of Mn(2+) in order to form the first stable intermediate in a process that culminates in the oxidative assembly of four Mn(2+) ions and one Ca(2+) ion to form the active, higher valence (Mn(4)-Ca) center of the WOC. To better define the kinetics of the dark rearrangement and to gain some understanding of the basis for the very low quantum yield of the overall process, photoactivation experiments, involving different flash patterns, were conducted with Synechocystis sp. PCC6803. It was found that even the so-called first stable intermediate is readily lost during protracted (1-10 s) dark periods during photoactivation of Synechocystis cells. Low concentrations of the electron acceptor, DCBQ, improved the stability of the dark intermediates. The unstable photoactivation intermediates formed early in the photoactivation process were not, however, stabilized by the addition of Ca(2+), although the overall yield of photoactivation is enhanced by the additional Ca(2+). Measurements of the kinetics of fluorescence yield verify that Q(A)(-) to Q(B) electron transfer rates change during the course of photoactivation as the high potential form of Q(A)(-) is converted to the low potential form and show that DCBQ acts as an efficient electron acceptor from Q(A)(-) even while in its high potential form. In addition the approximately 150 ms phase corresponding to the originally described dark rearrangement of photoactivation, repetitive, double flash experiments, with a 10 s intervening dark period, reveals a faster, 15 ms phase that is accentuated by DCBQ.  相似文献   

17.
Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i).  相似文献   

18.
19.
Jensen MR  Led JJ 《Biochemistry》2006,45(29):8782-8787
Information about the structure of a native nonmetalloprotein was obtained from the pseudocontact shifts induced by a paramagnetic metal ion bound to the protein. The approach exploits the presence of metal binding sites on the surface of the protein. Using Escherichia coli thioredoxin as a model protein, we show that potential binding sites can be identified using the Cu(2+) ion, and that pseudocontact shifts induced by a Ni(2+) ion bound to one of these sites can provide valuable long-range structure information about the protein.  相似文献   

20.
Patients suffering from myocardial ischemia reportedly exhibit reduced in vitro binding of exogenous Co(2+) to the N-terminal of human serum albumin (HSA). The purpose of our investigation was to simulate changes in the N-terminus of HSA that may account for these ischemia-induced modifications to the cobalt binding site. HPLC, LC-MS and (1)H NMR analyses have shown that the N-terminal region of HSA Asp-Ala-His-Lys binds the transition metals Co(2+) and Ni(2+). Synthetic peptides with the first 2-12 amino acids of the HSA sequence demonstrated that the first three amino acids, Asp-Ala-His, are essential for strong binding of cobalt. Modification of the N-terminus peptide of HSA by way of N-acetylation or the deletion of one or more amino acid resulted in no binding of cobalt. Because the degradation of the susceptible, specific transition metal binding site of HSA may account for the decreased cobalt binding observed during ischemic events, an assay that detects this reduced binding could be useful in the diagnosis of ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号