首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To make progress in genome analysis of azuki bean (Vigna angularis) a genetic linkage map was constructed from a backcross population of (V. nepalensis x V. angularis) x V.angularis consisting of 187 individuals. A total of 486 markers—205 simple sequence repeats (SSRs), 187 amplified fragment length polymorphisms (AFLPs) and 94 restriction fragment length polymorphisms (RFLPs) —were mapped onto 11 linkage groups corresponding to the haploid chromosome number of azuki bean. This map spans a total length of 832.1 cM with an average marker distance of 1.85 cM and is the most saturated map for a Vigna species to date. In addition, RFLP markers from other legumes facilitated finding several orthologous linkage groups based on previously published RFLP linkage maps. Most SSR primers that have been developed from SSR-enriched libraries detected a single locus. The SSR loci identified are distributed throughout the azuki bean genome. This moderately dense linkage map equipped with many SSR markers will be useful for mapping a range of useful traits such as those related to domestication and stress resistance. The mapping population will be used to develop advanced backcross lines for high resolution QTL mapping of these traits. O.K. Han, A. Kaga, T. Isemura have contributed equally to this paper.  相似文献   

2.
A genetic linkage map of black gram, Vigna mungo (L.) Hepper, was constructed with 428 molecular markers using an F9 recombinant inbred population of 104 individuals. The population was derived from an inter-subspecific cross between a black gram cultivar, TU94-2, and a wild genotype, V. mungo var. silvestris. The linkage analysis at a LOD score of 5.0 distributed all 428 markers (254 AFLP, 47 SSR, 86 RAPD, and 41 ISSR) into 11 linkage groups. The map spanned a total distance of 865.1 cM with an average marker density of 2 cM. The largest linkage group spanned 115 cM and the smallest linkage group was of 44.9 cM. The number of markers per linkage group ranged from 11 to 86 and the average distance between markers varied from 1.1 to 5.6 cM. Comparison of the map with other published azuki bean and black gram maps showed high colinearity of markers, with some inversions. The current map is the most saturated map for black gram to date and will provide a useful tool for identification of QTLs and for marker-assisted selection of agronomically important characters in black gram.  相似文献   

3.
A genetic linkage map of azuki bean (Vigna angularis) was constructed with molecular and morphological markers using an F2 population of an interspecific cross between azuki bean and its wild relative, V. nakashimae. In total, 132 markers (108 RAPD, 19 RFLP and five morphological markers) were mapped in 14 linkage groups covering 1250 cM; ten remained unlinked. The clusters of markers showing distorted segregation were found in linkage groups 2, 8 and 12. By comparing the azuki linkage map with those of mungbean and cowpea, using 20 RFLP common markers, some sets of the markers were found to belong to the same linkage groups of the respective maps, indicating that these linkage blocks are conserved among the three Vigna species. This map provides a tool for markerassisted selection and for studies of genome organization in Vigna species.  相似文献   

4.

Background and Aims

The Asian genus Vigna, to which four cultivated species (rice bean, azuki bean, mung bean and black gram) belong, is suitable for comparative genomics. The aims were to construct a genetic linkage map of rice bean, to identify the genomic regions associated with domestication in rice bean, and to compare these regions with those in azuki bean.

Methods

A genetic linkage map was constructed by using simple sequence repeat and amplified fragment length polymorphism markers in the BC1F1 population derived from a cross between cultivated and wild rice bean. Using this map, 31 domestication-related traits were dissected into quantitative trait loci (QTLs). The genetic linkage map and QTLs of rice bean were compared with those of azuki bean.

Key Results

A total of 326 markers converged into 11 linkage groups (LGs), corresponding to the haploid number of rice bean chromosomes. The domestication-related traits in rice bean associated with a few major QTLs distributed as clusters on LGs 2, 4 and 7. A high level of co-linearity in marker order between the rice bean and azuki bean linkage maps was observed. Major QTLs in rice bean were found on LG4, whereas major QTLs in azuki bean were found on LG9.

Conclusions

This is the first report of a genetic linkage map and QTLs for domestication-related traits in rice bean. The inheritance of domestication-related traits was so simple that a few major QTLs explained the phenotypic variation between cultivated and wild rice bean. The high level of genomic synteny between rice bean and azuki bean facilitates QTL comparison between species. These results provide a genetic foundation for improvement of rice bean; interchange of major QTLs between rice bean and azuki bean might be useful for broadening the genetic variation of both species.  相似文献   

5.
A genetic linkage map was developed with 86 F2 plants derived from an interspecific cross between azuki bean (Vigna angularis, 2n=2x=22) and rice bean (V. umbellata, 2n=2x=22). In total, 14 linkage groups, each containing more than 4 markers, were constructed with one phenotypic, 114 RFLP and 74 RAPD markers. The total map size was 1702 cM, and the average distance between markers was 9.7 cM. The loci showing significant deviation from the expected ratio clustered in several linkage groups. Most of the skewed loci were due to the predominance of rice bean alleles. The azuki-rice bean linkage map was compared with other available maps of Vigna species in subgenus Ceratotropis. Based on the lineage of the common mapped markers, 7 and 16 conserved linkage blocks were found in the interspecific map of azuki bean ×V. nakashimae and mungbean map, respectively. Although the present map is not fully saturated, it may facilitate gene tagging, QTL mapping and further useful gene transfer for azuki bean breeding. Received: 20 March 1999 / Accepted: 29 April 1999  相似文献   

6.
Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4x = 40) and a genome size of 730 Mbp. Ninety-four F9 recombinant inbred lines (RIL) derived from the interspecific cross, Eragrostis tef cv. Kaye Murri × Eragrostis pilosa (accession 30-5), were mapped using restriction fragment length polymorphisms (RFLP), simple sequence repeats derived from expressed sequence tags (EST–SSR), single nucleotide polymorphism/insertion and deletion (SNP/INDEL), intron fragment length polymorphism (IFLP) and inter-simple sequence repeat amplification (ISSR). A total of 156 loci from 121 markers was grouped into 21 linkage groups at LOD 4, and the map covered 2,081.5 cM with a mean density of 12.3 cM per locus. Three putative homoeologous groups were identified based on multi-locus markers. Sixteen percent of the loci deviated from normal segregation with a predominance of E. tef alleles, and a majority of the distorted loci were clustered on three linkage groups. This map will be useful for further genetic studies in tef including mapping of loci controlling quantitative traits (QTL), and comparative analysis with other cereal crops.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

7.
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), I (Yellow inhibitor) and C (Outer‐layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1 F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1 M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.  相似文献   

8.
In order to develop simple sequence repeat (SSR) markers in Italian ryegrass, we constructed a genomic library enriched for (CA)n-containing SSR repeats. A total of 1,544 clones were sequenced, of which 1,044 (67.6%) contained SSR motifs, and 395 unique clones were chosen for primer design. Three hundred and fifty-seven of these clones amplified products of the expected size in both parents of a two-way pseudo-testcross F1 mapping population, and 260 primer pairs detected genetic polymorphism in the F1 population. Genetic loci detected by a total of 218 primer pairs were assigned to locations on seven linkage groups, representing the seven chromosomes of the haploid Italian ryegrass karyotype. The SSR markers covered 887.8 cM of the female map and 795.8 cM of the male map. The average distance between two flanking SSR markers was 3.2 cM. The SSR markers developed in this study will be useful in cultivar discrimination, linkage analysis, and marker-assisted selection of Italian ryegrass and closely related species.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.  相似文献   

10.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

11.
The aim of this study was to identify the molecular markers (SSR, RAPD and SCAR) associated with Mungbean yellow mosaic virus resistance in an interspecific cross between a mungbean variety, VRM (Gg) 1 X a ricebean variety, TNAU RED. The parental survey was carried out by using 118 markers (including 106 azuki bean primers, seven mungbean primers and five ricebean primers). This study revealed that 42 azuki bean markers (39.62%) and four mungbean markers (54.07%) showed parental polymorphism. These polymorphic markers were surveyed among the 187 F2 plants and the results showed distorted segregation or chromosomal elimination at all the marker loci (thus, deviating from the expected 1:2:1 segregation). None of the plants harboured the homozygous ricebean allele for the markers surveyed and all of them were skewed towards mungbean, VRM (Gg) 1, allele, except a few plants which were found to be heterozygous for few markers. Among the 42 azuki bean SSR markers surveyed, only 10 markers produced heterozygotic pattern in six F2 lines viz. 3, 121, 122, 123, 185 and 186. These markers were surveyed in the corresponding F3 individuals, which too skewed towards the mungbean allele. In this study, one species-specific SCAR marker was developed for ricebean by designing primers from the sequenced putatively species-specific RAPD bands. A single, distinct and brightly resolved band of 400?bp was found amplified only in the resistant parent, TNAU RED, and not in any other six species or in the resistant or the susceptible bulks of the mapping population clearly indicated the identification of SCAR marker specific to the ricebean.  相似文献   

12.
A genetic map constructed from a population segregating for a trait of interest is required for QTL identification. The goal of this study was to construct a molecular map of tetraploid alfalfa (Medicago sativa.) using simple sequence repeat (SSR) markers derived primarily from expressed sequence tags (ESTs) and bacterial artificial chromosome (BAC) inserts of M. truncatula. This map will be used for the identification of drought tolerance QTL in alfalfa. Two first generation backcross populations were constructed from a cross between a water-use efficient, M. sativa subsp. falcata genotype and a low water-use efficient M. sativa subsp. sativa genotype. The two parents and their F1 were screened with 1680 primer pairs designed to amplify SSRs, and 605 single dose alleles (SDAs) were amplified. In the F1, 351 SDAs from 256 loci were mapped to 41 linkage groups. SDAs not inherited by the F1, but transmitted through the recurrent parents and segregating in the backcross populations, were mapped to 43 linkage groups, and 44 of these loci were incorporated into the composite maps. Homologous linkage groups were joined to form eight composite linkage groups representing the eight chromosomes of M. sativa. The composite maps consist of eight composite linkage groups with 243 SDAs from M. truncatula EST sequences, 38 SDAs from M. truncatula BAC clone sequences, and five SDAs from alfalfa genomic SSRs. The total composite map length is 624 cM, with average marker density per composite linkage group ranging from 1.5 to 4.4 cM, and an overall average density of 2.2 cM. Segregation distortion was 10%, and distorted loci tended to cluster on individual homologues of several linkage groups. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
A RFLP-based linkage map of mustard [Brassica juncea (L.) Czern. and Coss.]   总被引:2,自引:0,他引:2  
 A genetic linkage map of Brassica juncea was constructed based on restriction fragment length polymorphism (RFLP) detected by anonymous cDNA markers from B. napus, using a segregating F1-derived doubled haploid (DH) progeny from a cross between a canola-quality mustard line (J90-4317) and a high-oil-content mustard line (J90-2733). The RFLP probes consisted of 229 cDNA probes from B. napus and a B. napus tandem repeat sequence, RDA2. The map consisted of 343 marker loci arranged in 18 major linkage groups plus five small segments with two to five marker loci, covering a total map distance of 2073 cM. Twenty-four percent of the markers were dominant in nature. Sixty-two percent of the marker loci were duplicated, and the majority were involved in inter-linkage group duplications, illustrating that complex duplications and subsequent rearrangements occurred after allopolyploidy. Deviation from the Mendelian segregation ratio for a DH population was observed for 27% of the markers. Two-thirds of these markers with a skewed segregation were clustered in 6 linkage groups and two unassigned segments. The overall average marker interval of the B. juncea map reported here was 6.6 cM, which would provide a marker density satisfactory for efficient use of the map in breeding applications, such as tagging of important agronomic traits and marker-assisted selection. Received: 14 May 1996 / Accepted: 11 October 1996  相似文献   

14.
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl 13 . The F2 individuals and F3 families of the cross HA-R5 (resistant) × HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F2 individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl 13 gene. Genotyping the F2 population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15–22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl 13 gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl 13 gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.  相似文献   

15.
Tall fescue (Festuca arundinacea Schreb.) is commonly grown as forage and turf grass in the temperate regions of the world. Here, we report the first genetic map of tall fescue constructed with PCR-based markers. A combination of amplified fragment length polymorphisms (AFLPs) and expressed sequence tag-simple sequence repeats (EST-SSRs) of both tall fescue and those conserved in grass species was used for map construction. Genomic SSRs developed from Festuca × Lolium hybrids were also mapped. Two parental maps were initially constructed using a two-way pseudo-testcross mapping strategy. The female (HD28-56) map included 558 loci placed in 22 linkage groups (LGs) and covered 2,013 cM of the genome. In the male (R43-64) map, 579 loci were grouped in 22 LGs with a total map length of 1,722 cM. The marker density in the two maps varied from 3.61 cM (female parent) to 2.97 (male parent) cM per marker. These differences in map length indicated a reduced level of recombination in the male parent. Markers that revealed polymorphism within both parents and showed 3:1 segregation ratios were used as bridging loci to integrate the two parental maps as a bi-parental consensus. The integrated map covers 1,841 cM on 17 LGs, with an average of 54 loci per LG, and has an average marker density of 2.0 cM per marker. Homoeologous relationships among linkage groups of six of the seven predicted homeologous groups were identified. Three small groups from the HD28-56 map and four from the R43-64 map are yet to be integrated. Homoeologues of four of those groups were detected. Except for a few gaps, markers are well distributed throughout the genome. Clustering of those markers showing significant segregation distortion (23% of total) was observed in four of the LGs of the integrated map.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
Host-plant resistance is the most economic and effective strategy for root-knot nematode (RKN) Meloidogyne incognita control in cotton (Gossypium hirsutum L.). Molecular markers linked to resistance are important for incorporating resistance genes into elite cultivars. To screen for microsatellite markers (SSR) closely linked to RKN resistance in G. hirsutum cv. Acala NemX, F1, F2, BC1F1, and F2:7 recombinant inbred lines (RILs) from intraspecific crosses and an F2 from an interspecific cross with G. barbadense cv. Pima S-7 were used. Screening of 284 SSR markers, which cover all the known identified chromosomes and most linkage groups of cotton, was performed by bulked segregant analysis, revealing informative SSRs. The informative SSRs were then mapped on the above populations. One co-dominant SSR marker CIR316 was identified tightly linked to a major resistance gene (designated as rkn1), producing amplified DNA fragments of approximately 221 bp (CIR316a) and 210 bp (CIR316c) in Acala NemX and susceptible Acala SJ-2, respectively. The linkage between CIR316a marker and resistance gene rkn1 in Acala NemX had an estimated distance of 2.1–3.3 cM depending on the population used. Additional markers, including BNL1231 with loose linkage to rkn1 (map distance 25.1–27.4 cM), BNL1066, and CIR003 allowed the rkn1 gene to be mapped to cotton linkage group A03. This is the first report in cotton with a closely linked major gene locus determining nematode resistance, and informative SSRs may be used for marker-assisted selection.  相似文献   

17.
Summary A restriction fragment length polymorphism (RFLP)-based linkage map for common bean (Phaseolus vulgaris L.) covering 827 centiMorgans (cM) was developed based on a F2 mapping population derived from a cross between BAT93 and Jalo EEP558. The parental genotypes were chosen because they exhibited differences in evolutionary origin, allozymes, phaseolin type, and for several agronomic traits. The segregation of 152 markers was analyzed, including 115 RFLP loci, 7 isozyme loci, 8 random amplified polymorphic DNA (RAPD) marker loci, and 19 loci corresponding to 15 clones of known genes, 1 virus resistance gene, 1 flower color gene, and 1 seed color pattern gene. Using MAPMAKER and LINKAGE-1, we were able to assign 143 markers to 15 linkage groups, whereas 9 markers remained unassigned. The average interval between markers was 6.5 cM; only one interval was larger than 30 cM. A small fraction (9%) of the markers deviated significantly from the expected Mendelian ratios (121 or 31) and mapped into four clusters. Probes of known genes belonged to three categories: seed proteins, pathogen response genes, and Rhizobium response genes. Within each category, sequences homologous to the various probes were unlinked. The I gene for bean common mosaic virus resistance is the first disease resistance gene to be located on the common bean genetic linkage map.  相似文献   

18.
To gain a better understanding of wild and weedy azuki population structures in relation to the cultigens we have developed simple sequence repeat (SSR) markers based on a new methodology for plant material. In the azuki bean genome, the number of (AG)n and (AC)n motif loci per haploid genome has been estimated to be 3,500 and 2,100, respectively, indicating that (AG)n motifs are a rich source of markers. We constructed a (AG)n-SSR-enriched library in azuki bean in order to obtain a comprehensive range of SSR markers efficiently. The method applied in this study resulted in a 116-fold enrichment over the non-enriched genomic library, with a high percentage (98%) of successful single-locus amplification by the primer pairs designed. Consequently, this method can be applied to construct SSR-enriched libraries suitable for large-scale sequencing. We obtained 255 unique sequences from an (AG)n-enriched library for azuki bean. Fifty primer pairs were designed and screened against five populations of wild azuki bean. Among these five populations, one population from Bato town, Tochigi prefecture, Japan, showed greater polymorphism using these primers than the others and was therefore chosen for the in-depth study. The genotypes of 20 individuals were investigated using eight of the SSR primers developed. The genetic relationships among individuals revealed a complex spatial pattern of population structure. Although azuki bean is considered to be a predominantly self-pollinating species, 3 of the 20 individuals tested in the population showed heterozygous genotypes, indicating outcrossing. Allele size and DNA sequence in each of the 20 individuals were compared with those of landraces and released cultivars of azuki bean. Plants in part of the population had many alleles of the same size and with the same sequence as those in cultivated azuki bean, suggesting that gene flow from the cultigen to wild plants has occurred in this population. Unintentional transgene escape from azuki could therefore occur when transgenic azuki is grown in areas where its wild and weedy relatives occur. The approach used here could be applied to biosafety monitoring of transgenic azuki bean.Communicated by C. MöllersX.W. Wang and A. Kaga contributed equally to the results presented in this paper.  相似文献   

19.
To facilitate marker assisted selection, there is an urgent need to construct a saturated genetic map of upland cotton (Gossypium hirsutum L.). Four types of markers including SSR, SRAP, morphological marker, and intron targeted intron–exon splice junction (IT-ISJ) marker were used to construct a linkage map with 270 F2:7 recombinant inbred lines derived from an upland cotton cross (T586 × Yumian 1). A total of 7,508 SSR, 740 IT-ISJ and 384 SRAP primer pairs/combinations were used to screen for polymorphism between the two mapping parents, and the average polymorphisms of three types of molecular markers represented 6.8, 6.6 and 7.0%, respectively. The polymorphic primer pairs/combinations and morphological markers were used to genotype 270 recombinant inbred lines, and a map including 604 loci (509 SSR, 58 IT-ISJ, 29 SRAP and 8 morphological loci) and 60 linkage groups was constructed. The map spanned 3,140.9 cM with an average interval of 5.2 cM between two markers, approximately accounting for 70.6% of the cotton genome. Fifty-four of 60 linkage groups were ordered into 26 chromosomes. Multiple QTL mapping was used to identify QTL for fiber quality traits in five environments, and thirteen QTL were detected. These QTL included four for fiber length (FL), two for fiber strength (FS), two for fiber fineness (FF), three for fiber length uniformity (FU), and two for fiber elongation (FE), respectively. Each QTL explained between 7.4 and 43.1% of phenotypic variance. Five out of thirteen QTL (FL1 and FU1 on chromosome 6, FL2, FU2 and FF1 on chromosome7) were detected in five environments, and they explained more than 20% of the phenotypic variance. Eleven QTL were distributed on A genome, while the other two on D genome.  相似文献   

20.
A genetic map of kiwifruit (Actinidia spp.) was constructed using microsatellite and AFLP markers and the pseudo-testcross mapping strategy. (AC)n and (AG)n microsatellite repeats were first isolated from Actinidia chinensis (2n = 2x = 58) enriched genomic libraries and tested for segregation in the interspecific cross between the diploid distantly related species A. chinensis and A. callosa. Some 105 microsatellite loci of the 251 initially tested segregated in the progeny in a 1:1 ratio as in a classical backcross, or in a ratio which could mimic the backcross, and were mapped using 94 individuals. AFLP markers were then produced using MseI and EcoRI restriction enzymes and 15 primer combinations. Nearly 10% of loci showed a distorted segregation at α = 0.05, and only 4% at α = 0.01, irrespectively to the marker class. Two linkage maps were produced, one for each parent. The female map had 203 loci, of which 160 (71 SSR and 89 AFLP) constituted the framework map at a LOD score ≥ 2.0. The map was 1,758.5 cM(K) long, covering 46% of the estimated genome length. The male map had only 143 loci, of which 116 (28 SSR, 87 AFLP and the sex determinant) constituted the framework map. The map length was only 1,104.1 cM(K), covering 34% of the estimate genome length. Only 35 SSR loci were mapped in the male parent because 18% of SSR loci that were characterised did not amplify in A. callosa, and 48% were homozygous. The choice of parents in the pseudo-testcross is critically discussed. The sex determinant was mapped in A. callosa. Received: 27 July 2000 / Accepted: 31 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号