首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neurotransmitters are potential regulators of proliferation and differentiation of neural progenitor cells (NPC). To gain insight into the dynamics of neurotransmitter responsiveness, neurospheres were prepared from the lateral ventricles of postnatal day 6/7 mice. Individual NPCs migrating out from spheres were simultaneously monitored using Ca2+ imaging, during the initial 8 days of differentiation, at an area between the inner edge of the sphere and outer periphery of the area of migration. At the first day of differentiation most cells showed metabotropic responses (Ca2+ discharge from stores) to glutamate (pharmacologically identified as metabotropic glutamate receptor 5, mGluR 5), norepinephrine (NE), acetylcholine (Ach) and ATP, and a smaller proportion of cells also responded to substance P (SP). When outside the neurosphere, many of mGluR5 responding cells gained immunostaining for markers of neuronal lineage (Tuj-1 and NeuN). The number of cells responding through mGluR5 (and responses to Ach, NE and SP) showed during subsequent days of differentiation (day 2–3 onwards) a decline with time and progressively disappeared at the outer periphery of the area of migration. Conversely the number ionotropic glutamate responses as well as responses to depolarization increased in this area. After 5–8 days of differentiation mGluR5 responses could only be observed at the very inner edge of the neurosphere. At 8 days the migrated cells showed very robust ionotropic responses to glutamate, NMDA and depolarization comparable to mature neurons. Taken together, the data presented here suggest that differentiation of NPCs is a dynamic process triggered by cell migration, which leads to a loss of regulatory influences imposed by the inner milieu of the neurosphere. The subsequent switch or loss of metabotropic responses to glutamate, SP, NE, Ach and ATP with the gain of excitable characteristics such as ionotropic responses appears to be a key event in the final differentiation process.  相似文献   

2.
The blood-brain barrier (BBB) is a multifunctional endothelial interface separating the bloodstream from the brain interior. Although the mature BBB is well characterized, the embryonic development of this complex system remains poorly understood. Embryonic neural progenitor cells (NPC) are a potential inductive cell type populating the developing brain, and their ability to influence BBB properties was therefore examined. When puromycin-purified brain microvascular endothelial cells (BMEC) were co-cultured with embryonic NPC in a two-compartment Transwell system, the BMEC exhibited enhanced barrier properties in the form of increased transendothelial electrical resistance (TEER) and decreased permeability to the small molecule tracer, sodium fluorescein. These changes required the presence of NPC in the early stages of differentiation and were accompanied by alterations in the fidelity of BMEC tight junctions as indicated by occludin, claudin 5, and zonula occluden-1 redistribution at cell-cell borders. In contrast to the findings with NPC, post-natal astrocytes elicited a delayed, but longer duration response in BMEC TEER. BMEC co-culture also suppressed neuronal differentiation of NPC indicating a reciprocal signaling between the two cell populations. This study demonstrates that NPC-BMEC interactions are prevalent and for the first time demonstrates that NPC are capable of inducing BBB properties.  相似文献   

3.
Derivation of human neural progenitors (hNP) from human embryonic stem (hES) cells in culture has been reported with the use of feeder cells or conditioned media. This introduces undefined components into the system, limiting the ability to precisely investigate the requirement for factors that control the process. Also, the use of feeder cells of non-human origin introduces the potential for zoonotic transmission, limiting its clinical usefulness. Here we report a feeder-free system to produce hNP from hES cells and test the effects of various media components involved in the process. Five protocols using defined media components were compared for efficiency of hNP generation. Based on this analysis, we discuss the role of basic fibroblast growth factor (FGF2), N2 supplement, non-essential amino acids (NEAA), and knock-out serum replacement (KSR) on the process of hNP generation. All protocols led to down-regulation of Oct4/POU5F1 expression (from 90.5% to <3%), and up-regulation of neural progenitor markers to varying degrees. Media with N2 but not KSR and NEAA produced cultures with significantly higher (p<0.05) expression of the neural progenitor marker Musashi 1 (MSI1). Approximately 89% of these cells were Nestin (NES)+ after 3 weeks, but they did not proliferate. In contrast, differentiation media supplemented with KSR and NEAA produced fewer NES+ (75%) cells, but these cells were proliferative, and by five passages the culture consisted of >97% NES+ cells. This suggests that KSR and NEAA supplements did not enhance early differentiation but did promote proliferating of hNP cell cultures. This resulted in an efficient, robust, repeatable differentiation system suitable for generating large populations of hNP cells. This will facilitate further study of molecular and biochemical mechanisms in early human neural differentiation and potentially produce uniform neuronal cells for therapeutic uses without concern of zoonotic transmission from feeder layers.  相似文献   

4.
Embryonic stem cells (ES cells) are developmentally pluripotent cells isolated from pre-implantation mammalian embryos. In cell culture ES cells can be easily differentiated to generate cultures of neural progenitors. We present a simple method for the cryopreservation of these ES-derived neural progenitors. Cryopreserved neural progenitor stocks can be thawed, expanded with FGF2, and differentiated into functional neurons. This method will facilitate studies using ES-derived neural progenitor cells as a cell culture model system for neural development and differentiation. It will also aid studies designed to test the ability of these progenitor cells to functionally engraft and repair damaged neural tissue.  相似文献   

5.
Curcumin is a natural phenolic component of yellow curry spice, which is used in some cultures for the treatment of diseases associated with oxidative stress and inflammation. Curcumin has been reported to be capable of preventing the death of neurons in animal models of neurodegenerative disorders, but its possible effects on developmental and adult neuroplasticity are unknown. In the present study, we investigated the effects of curcumin on mouse multi-potent neural progenitor cells (NPC) and adult hippocampal neurogenesis. Curcumin exerted biphasic effects on cultured NPC; low concentrations stimulated cell proliferation, whereas high concentrations were cytotoxic. Curcumin activated extracellular signal-regulated kinases (ERKs) and p38 kinases, cellular signal transduction pathways known to be involved in the regulation of neuronal plasticity and stress responses. Inhibitors of ERKs and p38 kinases effectively blocked the mitogenic effect of curcumin in NPC. Administration of curcumin to adult mice resulted in a significant increase in the number of newly generated cells in the dentate gyrus of hippocampus, indicating that curcumin enhances adult hippocampal neurogenesis. Our findings suggest that curcumin can stimulate developmental and adult hippocampal neurogenesis, and a biological activity that may enhance neural plasticity and repair.  相似文献   

6.
Multipotent progenitor stem cells that generate both neurons and glia are components of the hippocampus, subventricular zone and olfactory system of adult mammalian nervous system. The lineage choices any stem cell makes are known to be greatly dependent on the constitution of the extracellular matrix to which they are exposed during their development. Here, the adult rat hippocampus was used as a source of cells for clonal culture in order to investigate the effects of the extracellular glycosaminoglycan heparan sulfate (HS). Neurospheres were readily generated from adult tissue and could be used as a source of cells for further experiments. HS species that promote the actions of fibroblast growth factor-2 (FGF2) for embryonic neural progenitors were found to inhibit the actions of this mitogen for adult progenitors. Only HS fractions that promoted the actions of FGF1 had mitogenic effects on these adult cells. The adult cells proved difficult to clone from single cells. However, when endogenous HS was purified from these cells and added back at high concentration to single cells, the clones were capable of generating plentiful neuronal and glial progeny. The adult hippocampal progenitor (AHP) HS is composed of 32 kDa chains bearing 3 sulfated domains. A proportion of primary osteoblast stem cells exposed to the hippocampal HS adopt neuronal phenotypes. Hence, there appears to be a combination of HS-binding extracellular molecules that predispose cells to particular lineages.  相似文献   

7.
Human embryonic stem cells (hESCs) and their differentiated progeny allow for investigation of important changes/events during normal embryonic development. Currently most of the research is focused on proteinacous changes occurring as a result of differentiation of stem cells and little is known about changes in cell surface glycosylation patterns. Identification of cell lineage specific glycans can help in understanding their role in maintenance, proliferation and differentiation. Furthermore, these glycans can serve as markers for isolation of homogenous populations of cells. Using a panel of eight biotinylated lectins, the glycan expression of hESCs, hESCs-derived human neural progenitors (hNP) cells, and hESCs-derived mesenchymal progenitor (hMP) cells was investigated. Our goal was to identify glycans that are unique for hNP cells and use the corresponding lectins for cell isolation. Flow cytometry and immunocytochemistry were used to determine expression and localization of glycans, respectively, in each cell type. These results show that the glycan expression changes upon differentiation of hESCs and is different for neural and mesenchymal lineage. For example, binding of PHA-L lectin is low in hESCs (14±4.4%) but significantly higher in differentiated hNP cells (99±0.4%) and hMP cells (90±3%). Three lectins: VVA, DBA and LTL have low binding in hESCs and hMP cells, but significantly higher binding in hNP cells. Finally, VVA lectin binding was used to isolate hNP cells from a mixed population of hESCs, hNP cells and hMP cells. This is the first report that compares glycan expression across these human stem cell lineages and identifies significant differences. Also, this is the first study that uses VVA lectin for isolation for human neural progenitor cells.  相似文献   

8.
9.
10.
11.
The presence of procathepsin D, a zymogen of the soluble lysosomal aspartic proteinase cathepsin D, was detected in rat milk using Western blot analysis and assay of proteolytic activity in acidic buffers. No other forms of cathepsin D were found. Two different polyclonal anti-procathepsin D antibodies were used for immunochemical detection of procathepsin D. Both antibodies we found to recognize rat procathepsin D. Proteolytic activity in acidic buffers was detected using a fluorogenic substrate specific for cathepsin D and was abolished by pepstatin A, a specific inhibitor of aspartic proteinases. This study represents third demonstration of presence of procathepsin D in mammal breast milk. Potential sources and physiological functions are discussed.  相似文献   

12.
Investigating the mechanisms controlling the asymmetric division of neocortical progenitors that generate neurones in the mammalian brain is crucial for understanding the abnormalities of cortical development. Partitioning of fate determinants is a key instructive step and components of the apical junctional complex (adherens junctions), including the polarity proteins PAR3 and aPKC as well as adhesion molecules such as N‐cadherin, have been proposed to be candidate determinants. In this study, however, we found no correlation between the partitioning of N‐cadherin and fate determination. Rather, we show that adherens junctions comprise three membrane domains, and that during asymmetrical division these are split such that both daughters retain the adhesive proteins that control cell position, but only one daughter inherits the polarity proteins along with the apical membrane. This provides a molecular explanation as to how both daughters remain anchored to the ventricular surface after mitosis, while adopting different fates.  相似文献   

13.
14.
It is widely thought that accumulation of reactive oxygen species (ROS) causes injury to cells. In this study, we investigated the effect of endogenous ROS on the proliferation of neural stem/progenitor cells derived from the hippocampus of embryonic mice. The cells were treated with free radical-scavenging agents [3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) or 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol)], an NADPH oxidase inhibitor (apocynin), catalase, a nitric oxide synthase inhibitor [Nω-nitro-l-arginine methyl ester hydrochloride (L-NAME)] or a peroxynitrite generator (SIN-1) during the culture period. Edaravone and tempol had the ability to decrease endogenous ROS in the cells exposed for periods from 1 to 24 h, with attenuation of the proliferation activity of the cells during culture. Apocynin and L-NAME were also effective in attenuating cell proliferation but not cellular damage. Conversely, SIN-1 was capable of promoting the proliferation activity. However, catalase had no effect on the proliferation activity of the cells during culture. Furthermore, tempol significantly decreased the level of NFκB p65, phospho-cyclic AMP response element-binding protein, and β-catenin within the nucleus of the cells. These data suggest that endogenous ROS and nitric oxide are essential for the proliferation of embryonic neural stem/progenitor cells.  相似文献   

15.
16.
We used a vaccinia virus expression system for the production of recombinant human cathepsin D (CD), a lysosomal protease implicated in various patho-physiological processes including cancer, neurodegeneration, and development. The recombinant protein was successfully expressed in various human and non-human cells. It was correctly synthesized as a glycosylated 53 kDa precursor (proCDrec) that reacted with a polyclonal antibody against residues 7-21 of the propeptide sequence. In contrast to the control, in cells infected with the recombinant virus proCDrec was largely secreted into the culture medium, although it contained high-mannose oligosaccharides with uncovered mannose-6-phosphate residues. Intracellular proCDrec was processed into the 48 kDa intermediate single-chain and the 31 plus 13 kDa double-chain forms, however, the processing was slower than in normal cells. A method based on Pepstatin A-affinity chromatography allowed to isolate the recombinant protein from the medium of infected cells. Based on its latency in activity assay at acid pH and on its reactivity with antibodies specific for the N-terminus, the purified protein was judged to be in the inactive precursor form. During incubation at acid pH the purified proCDrec underwent autocatalytic processing and acquired pepstatin A-sensitive enzyme activity, as expected for correctly folded proCD. Antiserum raised in rabbits against proCDrec specifically reacted with human, but not with mouse proCD under non-denaturing conditions. We conclude that our vaccinia virus-directed proCDrec displays structural and functional features resembling those of native human proCD. This system can therefore be exploited for the synthesis of large quantities of human proCD, allowing further studies on the structure and function of this interesting protein.  相似文献   

17.
Hypoxia may regulate the proliferation of diverse stem cells. Our previous study showed that hypoxia promoted the proliferation of embryonic neural stem/progenitor cells (NPCs) and that hypoxia inducible factor-1(HIF-1) was critical in this process. HIF-1 could be stabilized under hypoxic conditions, and heat shock protein 90 (HSP90) is an essential protein that controls the activity and stabilization of HIF-1α. In the present work, we investigate whether HSP90 is involved in proliferation of NPCs under hypoxia by regulating HIF-1α stabilization. Geldanamycin (GA), an HSP90 inhibitor, decreased the expression of HIF-1α in NPCs during hypoxia-driven proliferation and reduced the expression level of HIF-1α protein under hypoxia in a time-dependent manner. The proliferation of NPCs induced by hypoxia was inhibited after GA treatment for 24 h. Another HSP90 inhibitor, radicicol, had the same effect on NPCs as GA. Furthermore, the expression of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in NPCs under hypoxia was suppressed by GA. The above data indicated that HSP90 might be involved in regulation of hypoxia-driven proliferation. Both institutes have contributed equally to this work.  相似文献   

18.
19.
Hepatic maturation in differentiating embryonic stem cells in vitro   总被引:61,自引:0,他引:61  
We investigated the potential of mouse embryonic stem (ES) cells to differentiate into hepatocytes in vitro. Differentiating ES cells expressed endodermal-specific genes, such as alpha-fetoprotein, transthyretin, alpha 1-anti-trypsin and albumin, when cultured without additional growth factors and late differential markers of hepatic development, such as tyrosine aminotransferase (TAT) and glucose-6-phosphatase (G6P), when cultured in the presence of growth factors critical for late embryonic liver development. Further, induction of TAT and G6P expression was induced regardless of expression of the functional SEK1 gene, which is thought to provide a survival signal for hepatocytes during an early stage of liver morphogenesis. The data indicate that the in vitro ES differentiation system has a potential to generate mature hepatocytes. The system has also been found useful in analyzing the role of growth factors and intracellular signaling molecules in hepatic development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号