首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endothelins (ETs) comprise a family of 21 amino acid peptides, ET-1, ET-2 and ET-3, first demonstrated as products of vascular endothelium. Subsequent work showed that they are also found in non-endothelial cells from a variety of tissues such as breast, parathyroid and adrenal gland. At first, the ETs were recognized for their pressor effects. However, ET administration in vivo initially caused hypotension at low concentrations by triggering the paracrine release of endothelial-derived vasodilators. The ETs exert powerful contractile actions on myometrium and other types of smooth muscle and are mitogenic, or co-mitogenic for fibroblasts, vascular smooth muscle and other cells. Demonstration of extravascular ET in endometrium has revealed a powerful vasoconstrictor which might act on the spiral arterioles to effect a powerful and sustained contraction of vascular smooth muscle. ETs might also contribute to the process of endometrial repair. In addition, the ETs appear to play a fundamental role in the control of uterine function in pregnancy. Effects on myometrial contractility have been implicated in the mechanisms governing the onset of normal and pre-term labour, and the peptides are likely to be key determinants of placental blood flow by binding to vascular smooth muscle receptors in the placenta.  相似文献   

2.
The activity of peptidyl dipeptidase (peptidyldipeptide hydrolase, EC 3.4.15.1), also known as angiotensin-converting enzyme, was studied in small blood vessel preparations isolated from rabbit brain. The vascular preparation contained arterioles and capillaries and was essentially free of extravascular material. Enzymatic activity was demonstrated in microvessel homogenates using both hippuryl-histidyl-leucine and tritium-labeled angiotensin I as substrates. Activity in the microvessels was dependent on the presence of chloride ion and was sensitive to inhibition by converting enzyme inhibitors previously shown to be effective in both vivo and in vitro. Specific activity in the micro-vessels was approximately 20 times that in homogenates of brain, and was almost 60% of that found in rat lung homogenates. The data were consistent with an endothelial localication for peptidyl dipeptidase in the cerebral vasculature and supports the proposal that this enzyme has a physiological role in extrapulmonary vascular beds.  相似文献   

3.
In severe obesity, microvascular endothelial regulation of nitric oxide (NO) formation is compromised in response to muscarinic stimulation, and major arteries have suppressed flow-mediated dilation. Because normal microvessels are highly dependent on flow-mediated stimulation of NO generation and are responsive to intra- and extravascular oxygen availability, they are likely a major site of impaired endothelial regulation. This study evaluated the blood flow and oxygen-dependent aspects of intestinal microvascular regulation and NO production in Zucker obese rats just before the onset of hyperglycemia. Ruboxistaurin (LY-333531) was used to inhibit PKC-betaII to determine whether flow or oxygen-related NO regulation was improved. Blood flow velocity was increased by forcing arterioles to perfuse approximately 50% larger tissue areas by occlusion of nearby arterioles, and oxygen tension in the bath was lowered to create a modest oxygen depletion. When compared with lean Zucker rats, the periarteriolar NO concentration ([NO]) for obese rats was approximately 30% below normal. At elevated shear rates, the [NO] for arterioles of obese animals was 20-30% below those in the arterioles of lean rats, and the NO response to decreased oxygen was about half normal in obese rats. All of these regulatory problems were essentially corrected in obese rats by PKC blockade with only minor changes in the microvascular behavior in lean rats. Therefore, activation of PKC-betaII in endothelial cells during obesity suppressed NO regulation both at rest and in response to increased flow velocity and decreased oxygen availability.  相似文献   

4.
A reduction in the density of small arterioles (rarefaction) has been reported in several vascular beds of the spontaneously hypertensive rat (SHR). There have been conflicting reports on the existence of rarefaction in the pial vasculature of SHR. In this study, we determined whether there was rarefaction of pial arterioles in several models of hypertension. We studied SHR; two-kidney, one-clip Goldblatt hypertensive rats; deoxycorticosterone-salt hypertensive rats; and Dahl salt-sensitive rats fed high salt diet. The two groups of normotensive controls were Wistar--Kyoto rats and Dahl salt-sensitive rats fed low salt diet. The duration of hypertension was about 2 months. Density of first-, second-, third-, and fourth-order arterioles was determined by counting the number of vessels from enlarge photographs. We also measured the lengths of segments of the arterioles. We did not observe any evidence of rarefaction of arterioles in the pial vasculature in any of the hypertensive groups of rats. We conclude that (i) rarefaction of arterioles does not occur in the pial microvasculature after approximately 2 months of hypertension and (ii) rarefaction of pial arterioles does not account for abnormalities in the cerebral circulation of hypertensive rats such as protection of the blood-brain barrier or changes in autoregulation of cerebral blood flow.  相似文献   

5.
The microvasculature (MV) of serous membranes was compared in rats with spontaneous genetic hypertension (SHR) and in normotensive Wistar rats. The study showed that in hypertension MV lesions had a systemic distribution, as structural changes were present in every MV component (arterioles, precapillaries, capillaries, postcapillaries, venules, lymphatic capillaries, and postcapillaries, nerve fibers); these lesions were generalized, as similar alterations could be found in all serous membranes studied. A close resemblance observed between MV of serous membranes in SHR and in patients who died of hypertensive disease confirms the concept suggesting the existence of MV changes which were relatively specific for hypertension, along with those of the nonspecific nature. Specificity of the hypertensive process is manifested in severe vascular lesions of a peculiar type, while the nonspecific phenomena are represented by a combination of intravascular, perivascular, and minimal vascular alterations represented by a universal MV response to various stresses.  相似文献   

6.
In total preparations of the white rat small intestine mesentery, impregnated with silver nitrate, as well as under conditions of vital microscopical observations at certain stages of alimentary experimental dehydration, analogous changes in the microcirculatory bed links have been demonstrated. Comparison of quantitative parameters in decreasing diameters of the microvessels, specific for dehydrated preparations has shown a great importance of these changes in the impregnated preparations at the expense of tissue condensation at their histological treatment. The advantages of a complex application of both methods for estimating dynamics of vascular, intervascular and extravascular changes are proved.  相似文献   

7.
An intact vasculature is essential for successful hypothermic perfusion and cryopreservation of solid organs, but few studies have specifically assessed the vascular effects of these procedures. A technique was therefore developed for continuous, direct observation of an isolated vascular bed during hypothermic perfusion with cryoprotectants, and during freezing and thawing. The isolated rat mesentery was spread across a controlled low temperature microscope stage and perfused with solutions containing fluorescein isothiocyanate (FITC)-Dextran 70 as an indicator of macromolecular permeability of the vessels. Hypertonic citrate washout, HP-5 perfusion (23), rapid and slow addition and removal of glycerol, and freezing/thawing were studied. Control perfusion with HP-5 produced slow FITC-Dextran leakage, reflecting normal physiological macromolecular permeability of vessels. Rapid addition of glycerol dramatically increased vascular permeability, consistent with osmotic damage to vessels. Rapid removal stopped flow through capillaries and decreased vascular dimensions, suggesting overhydration of endothelial cells and extravascular tissue. Venules and capillaries were the most susceptible vessels to osmotic stress. Slow addition and removal of glycerol (80 mmol/liter/min) produced results similar to control perfusions. During slow freezing (0.5 degree C/min to -5 degrees C) extravascular ice compressing vessels was more obvious than intravascular ice. Glycerol afforded some protection to the microvasculature during freeze/thaw cycles since flow was reestablished in venules and arterioles after thawing, although FITC-Dextran leakage indicated that damage had occurred.  相似文献   

8.
This study compared hemodynamic changes of acral arterioles (pulps and nail beds of fingers and toes) and the microcirculatory status of acra between patients with uncomplicated (n = 45) or complicated (n = 36) type 2 diabetic mellitus (type 2 DM) and healthy subjects (n = 40). Enhanced power Doppler imaging (e-Flow) was used to display the nail bed arterioles and distal branches of pulp arterioles (digitales palmares propriea and digitales plantares propriea) in the end knuckle of the right middle finger and right big toe. Arteriolar density (AD) was assessed by vascular pixel percentage. Compared to healthy subjects, in patients with DM the end diastolic velocity (EDV) of the nail bed arterioles of both finger and toe was diminished, while the vascular resistance index (RI) was increased. These changes became more prominent with a longer duration of the disease. Furthermore, both the peak systolic velocity (PSV) and AD were decreased in patients with DM. These hemodynamic changes were also evident in the pulp arterioles of fingers and toes, although they appeared at more advanced stages of the disease. Overall, the abnormal changes were more pronounced in patients with complications. In conclusion, hemodynamic changes (e.g. decrease in the number of acral arterioles) progress with a longer duration of the disease. The acral arteriolar damage is more pronounced in patients with a complicated type 2 DM.  相似文献   

9.
Summary The interior of Bowman's capsules of rat kidneys has been examined by scanning electron microscopy, and a distinctive population of cells around the exposed vascular poles of glomerular tufts were identified. The cells were situated in the annular groove at the root of the glomerulus, between the parietal epithelial cells and the podocytes. These peripolar cells were dendritic cells with long processes embracing the glomerular arterioles. Up to three peripolar cells were present at each vascular pole and they were mainly distributed in the glomeruli of the outer third of the renal cortex. This first detailed study of the surface morphology of the glomerular peripolar cell supports the suggestion that changes in the diameter of the polar region of the glomerular tuft may cause variations in stretching of the cuff of peripolar cells, and hence modulation of their secretory activity.  相似文献   

10.
Some investigators have reported that endogenous beta-adrenoceptor tone can provide protection against acute lung injury. Therefore, we tested the effects of beta-adrenoceptor inhibition in mice with acute Escherichia coli pneumonia. Mice were pretreated with propranolol or saline and then intratracheally instilled with live E. coli (10(7) colony-forming units). Hemodynamics, arterial blood gases, plasma catecholamines, extravascular lung water, lung permeability to protein, bacterial counts, and alveolar fluid clearance were measured. Acute E. coli pneumonia was established after 4 h with histological evidence of acute pulmonary inflammation, arterial hypoxemia, a threefold increase in lung vascular permeability, and a 30% increase in extravascular lung water as an increase in plasma catecholamine levels. beta-Adrenoceptor inhibition resulted in a marked increase in extravascular lung water that was explained by both an increase in lung vascular permeability and a reduction in net alveolar fluid clearance. The increase in extravascular lung water with propranolol pretreatment was not explained by an increase in systemic or vascular pressures. The increase in lung vascular permeability was explained in part by anti-inflammatory effects of beta-adrenoceptor stimulation because plasma macrophage inflammatory protein-2 levels were higher in the propranolol pretreatment group compared with controls. The decrease in alveolar fluid clearance with propranolol was explained by a decrease in catecholamine-stimulated fluid clearance. Together, these results indicate that endogenous beta-adrenoceptor tone has a protective effect in limiting accumulation of extravascular lung water in acute severe E. coli pneumonia in mice by two mechanisms: 1) reducing lung vascular injury and 2) upregulating the resolution of alveolar edema.  相似文献   

11.
Ultrastructure of cellular elements of the microcirculatory bed and filtration-reabsorption barrier has been studied in 150 mature white rats, in which vascular fasciculus of the left kidney has been compressed for 30 min, 1-2 h with a subsequent restoration of the blood stream in the organ undergone ischemia on the 3rd, 7th, 14th, 30th, 60th, 180th, 360th days under conditions of the preliminarily right kidney nephrectomy. On the 3rd day after ischemia of the remained kidney for 30 min, structural components of the walls of the glomerular arterioles and those of the filtration-reabsorption barrier undergo certain ultrastructural changes, that with time elapsed (7, 14 days) gradually pass away, and amount of cells with hypertrophic processes increases. Ischemia for 1 h in the remained kidney with subsequent restoration of the blood stream on the 3rd, 7th days produces in the structures mentioned more pronounced destructive changes. During subsequent compensatory hypertrophy (the 30th, 60th days) of the remained kidney after its ischemia, in the microcirculatory bed elements and in the convoluted canal epitheliocytes intracellular regenerative and hyperplastic processes develop. However, ischemia for 2 h in the remained kidney produces severe destructive-necrotic phenomena in ultrastructure of the microcirculatory bed and of the filtration-reabsorption barrier.  相似文献   

12.
Structural adaptation in arterioles is part of normal vascular physiology but is also seen in disease states such as hypertension. Smooth muscle cell (SMC) activation has been shown to be central to microvascular remodeling. We hypothesize that, in a remodeling process driven by SMC activation, stress sensitivity of the vascular wall is a key element in the process of achieving a stable vascular structure. We address whether the adaptive changes in arterioles under different conditions can arise through a common mechanism: remodeling in a stress-sensitive wall driven by a shift in SMC activation. We present a simple dynamic model and show that structural remodeling of the vessel radius by rearrangement of the wall material around a lumen of a different diameter and driven by differences in SMC activation can lead to vascular structures similar to those observed experimentally under various conditions. The change in structure simultaneously leads to uniform levels of circumferential wall stress and wall strain, despite differences in transmural pressure. A simulated vasoconstriction caused by increased SMC activation leads to inward remodeling, whereas outward remodeling follows relaxation of the vascular wall. The results are independent of the specific myogenic properties of the vessel. The simulated results are robust in the face of parameter changes and, hence, may be generalized to vessels from different vascular beds.  相似文献   

13.
At the onset of dynamic exercise, muscle blood flow increases within 1-2 s. It has been postulated that local vasodilatory agents produced by the vascular endothelium or the muscle itself contribute to this response. We hypothesized that only vasodilators that act directly on the vascular smooth muscle could produce vasodilation of skeletal muscle arterioles in <2 s. To test this hypothesis, we determined the time course of the vasodilatory response of isolated skeletal muscle arterioles to direct application of potassium chloride, adenosine, acetylcholine, and sodium nitroprusside. Soleus and gastrocnemius muscles were dissected from the hindlimbs of male Sprague-Dawley rats. First-order arterioles (100-200 microm) were isolated, cannulated on micropipettes, and pressurized to 60 cmH(2)O in an organ bath. Vasodilatory agents were added directly to the bath, and diameter responses of the arterioles were recorded in real time on a videotape recorder. Frame-by-frame analysis of the diameter responses indicated that none of the vasodilator agents tested produced significant diameter increases in <4 s in either soleus or gastrocnemius muscle arterioles. These results indicate that, although these local vasodilators produce significant vasodilation of skeletal muscle resistance arterioles, these responses are not rapid enough (within 1-2 s) to contribute to the initiation of the exercise hyperemic response at the onset of dynamic exercise.  相似文献   

14.
J Marais 《Acta anatomica》1989,134(1):79-81
The vascular architecture of the dermal laminae was studied by scanning electron microscopy of vascular corrosion casts. Ultrastructurally, the laminar vasculature consisted of arterioles, capillaries, venules and veins, arranged in a sheet-like network. Through the laminae, arterioles ran parallel to the solar surface and branched at two levels to form a continuous arteriolar arcade, parallel to the hoof wall. Capillaries originating from these arcades formed hairpin loops joining the marginal vein prior to forming an axially situated venous network. Additional capillaries were also given off by the arterioles, forming an abaxially arranged capillary plexus.  相似文献   

15.
Historically, functional hyperemia has been viewed largely as an interaction between a parenchymal cell and its associated microvasculature. Locally released metabolites have been thought to produce relaxation of the smooth muscle and a vasodilation that increases blood flow in proportion to metabolic need. This symposium report presents evidence from a variety of disciplines and a number of different types of biological preparations that demonstrates that functional hyperemia is a complex process involving several classes of microvessels including capillaries, arterioles, and small arteries. These vessels do not function independently but are coordinated by a complex set of interrelations involving at least three different modes of interaction between parenchymal cells and the various segments of the vascular bed. These are local metabolic effects, propagated effects extending over long segments of the vasculature, and flow-dependent vasodilation induced by local changes in blood flow. In addition to these acute responses to metabolic demand it appears that tissues may be capable of more long-term structural alterations of the arterial and arteriolar network in response to sustained changes in the relationship between supply and demand. The vascular bed appears to be able to adapt either by increasing the maximal anatomic diameter of the large arteries or by inserting new arterioles into the parenchyma. Thus, classical functional hyperemia appears to be but one manifestation of a multifaceted process leading to highly coordinated responses of many vascular elements, resulting finally in vascular patterns that are optimized to meet parenchymal cell demands.  相似文献   

16.
In open-chest anaesthetized dogs the relative magnitude of extravascular resistance in the superficial and deep left ventricular myocardium was estimated from the flow through the isolated vascular segments inserted at different depths of the myocardium. It was confirmed that in the normally working heart extravascular resistance was significantly greater in the deep than in the superficial layer. In the unloaded fibrillating left ventricle no difference in extravascular resistance between these layers could be detected. Since it had been found previously that subendocardial preponderance of ischaemia persists in the unloaded fibrillating left ventricle (Sedek and Micha?owski, submitted for publication), the present observation is a further challenge for the current view that the subendocardium is more vulnerable to ischaemia because extravascular resistance is greater in this layer.  相似文献   

17.
Changes in NO activity may play an important role in the early increase in microvascular flow that has been implicated in the pathogenesis of diabetic microangiopathy. We assessed, in the in situ spinotrapezius muscle preparation of 6 weeks'' streptozotocin-diabetic rats (n = 6) and of agematched controls (n = 8), basal inside diameters of A2–A4 arterioles and the reactivity to topically applied acetylcholine and nitroprusside, before and after NG-nitro-L-arginine. In diabetic rats, cholinergic vasodilatation in A2–A4 arterioles was intact. Basal diameter in A3 and A4 arterioles was significantly higher in streptozotocin-diabetic rats. The increased basal diameter in A3 arterioles was partially due to an increased contribution of NO to basal diameter. The response to nitroprusside was impaired in streptozotocin-diabetic rats in A2, but not in A3 and A4 arterioles. Thus, this study shows that NO activity and sensitivity are altered after 6 weeks of streptozotocin-induced diabetes. These streptozotocin-induced changes are anatomically specific and, for arterioles, depend on their position within the vascular tree.  相似文献   

18.
In experiments on rats it was found that at the early stages (5 to 15 minutes) after vasoconstriction of the kidney caused by adrenaline solution there occurred sharp narrowing of the intraorganic arterial bed lumen, particularly that of the afferent arterioles. Ultrastructural changes in the glomerular renal capillary components observed were morphological expression of the effect of angiospasm and circulatory hypoxia. Residual phenomena of constriction of the renal microcirculatory bed still persisted at later stages--in 3, 7 days. These changes characterized the stage of peculiar mobility and contractile properties of their endothelial cells, caused by spasmogenic disturbances of microcirculation.  相似文献   

19.
Recent studies have renewed interest in the effects of perivascular tethering on vascular mechanics, particularly growth and remodeling. We quantified effects of axial and circumferential tethering on rabbit pial arterioles from the ventral occipital lobe of the brain. The homeostatic axial pre-stretch, which is influenced by perivascular tethering, was measured in situ to be 1.24±0.04. Using a cannulated microvessel preparation, wall mechanics were then quantified in vitro for isolated arterioles at low (1.10) or normal (1.24) values of axial stretch and for tethered arterioles having perivascular support. Axial stretch did not significantly affect changes in circumferential stretch or stress upon pressurization, but circumferential tethering caused arteriolar geometry to change from a circular cross-section at normal pressure to an elliptical one at pressures above and below normal. Calculations suggested that the observed levels of ellipticity could cause a modest decrease in volumetric blood flow, but also a pronounced variation in shear stress around the circumference of the arteriole. An elliptical cross-section could thus increase vascular resistance or promote luminal remodeling at pressures different from normal. This characterization of effects of perivascular tethering on pial arterioles should prove useful in future studies of roles of perturbed cerebral blood flow on the propensity of the cerebral microcirculation to remodel.  相似文献   

20.
To examine the effects of vascular tone reduction on O2 consumption of the vascular wall, we determined the O2 consumption rates of arteriolar walls under normal conditions and during vasodilation induced by topical application of papaverine. A phosphorescence quenching technique was used to quantify intra- and perivascular PO2 in rat cremaster arterioles with different branching orders. Then, the measured radial PO2 gradients and a theoretical model were used to estimate the O2 consumption rates of the arteriolar walls. The vascular O2 consumption rates of functional arterioles were >100 times greater than those observed in in vitro experiments. The vascular O2 consumption rate was highest in first-order (1A) arterioles, which are located upstream, and sequentially decreased downstream in 2A and 3A arterioles under normal conditions. During papaverine-induced vasodilation, on the other hand, the O2 consumption rates of the vascular walls decreased to similar levels, suggesting that the high O2 consumption rates of 1A arterioles under normal conditions depend in part on the workload of the vascular smooth muscle. These results strongly support the hypothesis that arteriolar walls consume a significant amount of O2 compared with the surrounding tissue. Furthermore, the reduction of vascular tone of arteriolar walls may facilitate an efficient supply of O2 to the surrounding tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号