首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

2.
Photosynthetically fixed 14C was analyzed in various chemical fractions from leaves and stems of cottonwood (Populus deltoides Bartr. ex. Marsh.) during dormancy induction. Dormancy was induced by 8-h photoperiods and 20/14°C temperature regimes. Within 4 weeks under short days, terminal buds were set and leaf expansion and stem elongation had stopped. 14C2 was fed to a leaf at Leaf Plastochron Index 7 for 30 min. Either after this 30 min feeding period or after a 48-h translocation period the plants were sampled, freeze-dried, extracted and analyzed for14C. 14C-fixation decreased during dormancy induction from 60% to 17% of the 3.7 MBq 14C applied at 0 week and 8 weeks, respectively. Percentage distribution of 14C in chemical fractions of source leaves reflected leaf age and translocation inhibition. In rapidly growing plants, considerable 14C was incorporated into leaf protein while most of the soluble14C-sugars were either metabolized or translocated out of the leaf. After terminal bud set, the percentage of 14C in the protein and residue fractions decreased rapidly and that in the sugar fraction increased. Percent distribution in stems closely reflected changing metabolic pathways of carbon flow as influenced by dormancy induction. For example, the 14C in structural carbohydrates decreased in 5 weeks under short days from 65 to less than 10% of the 14C recovered in the chemical fractions, thus indicating cambium inhibition. At the same time the percentage of 14C in starch and sugar increased indicating storage. Short term (after 30 min) incorporation of 14C into the protein and starch fractions of leaves changed relatively little throughout the 8-week induction period. In contrast the turnover rates of these fractions (14C present after 48 h) increased considerably after active growth of the whole plant stopped.  相似文献   

3.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

4.
Abstract: The production of 14CO2 and [14C]acetylcholine from [U-14C]glucose was determined in vitro using tissue prisms prepared from the dorsolateral striatum (a region developing extensive neuronal loss following ischemia) and the paramedian neocortex (an ischemia-resistant region) following 30 min of forebrain ischemia and recirculation up to 24 h. Measurements were determined under basal conditions (5 mMK+) and following K+ depolarization (31 mM K+). The production of 14CO2 by the dorsolateral striatum was significantly reduced following 30 min of ischemia for measurements in either 5 or 31 mM K+ but recovered toward preischemic control values during the first hour of recirculation. Further recirculation resulted in 14CO2 production again being reduced relative to control values but with larger differences (20–27% reductions) detectable under depolarized conditions at recirculation times up to 6 h. Samples from the paramedian neocortex showed no significant changes from control values at all time points examined. [14C]Acetylcholine synthesis, a marker of cholinergic terminals that is sensitive to changes in glucose metabolism in these structures, was again significantly reduced only in the dorsolateral striatum. However, even in this tissue, only small (nonstatistically significant) differences were seen during the first 6 h of recirculation, a finding suggesting that changes in glucose oxidation during this period were not uniform within all tissue components. The results of this study provide evidence that in a region susceptible to ischemic damage there were specific changes during early recirculation in the metabolic response to depolarization. This apparent inability to respond appropriately to an increased need for energy production could contribute to the further deterioration of cell function in vivo and ultimately to the death of some cells.  相似文献   

5.
—Clearance of [14C]DOPA and [14C]dopamine from CSF was investigated in anaesthetized rhesus monkeys (M. Mulatta) subjected to ventriculocisternal perfusion. The efflux coefficients, kVE, at tracer concentrations (3–5 m ) in the perfusate were 0.0487 ml/min and 0.0325 ml/min for [14C]DOPA and [14C]dopamine, respectively. Carrier DOPA (10 mm ) in the perfusate decreased the efflux of [14C]DOPAsignificantly, but carrier dopamine had no appreciable effect on the clearance of [14C]dopamine. These findings suggest that DOPA is cleared from CSF in part by a saturable mechanism which may be located in the choroid plexus, whereas dopamine leaves the ventricular system by passive diffusion. Radioactivity in the caudate nucleus immediately adjacent to the perfused ventricle averaged 15.5 % and 12.6% of the radioactivity in the perfusates with [14C]DOPA or [14C]dopamine, respectively. These distribution percentages were similar to those found for various extracellular indicators after ventriculocisternal perfusion and may indicate that the efflux of intraventricularly-administered exogenous DOPA and dopamine occurs in part through extracellular channels.  相似文献   

6.
Abstract— A 100,000 g supernatant fraction from rat brain that was passed through a column of Sephadex G-25-40 was able, after addition of some factors, to incorporate [I4C]arginine (apparent Km= 5 μM) and [14C]tyrosine (apparent Km= 20 μM) into its own proteins. The factors required for the incorporation of [14C]arginine were: ATP (optimal concentration = 0-25-2 μM) and Mg2+ (optimal concentration 5 mM). For the incorporation of [I4C]tyrosine the required factors were: ATP (apparent Km= 0-75 μM), Mg2+ (optimalconcentration 8-16 mM) and K+ (apparent Km= 16 mM). Addition of 19 amino acids did not enhance these incorporations. Optimal pHs were: for [14C]arginine and [14C]tyrosine, respectively, 7-4 and 7-0 in phosphate buffer and 7–9 and 7-3-8-1 in tris-HCl buffer. Pancreatic ribonuclease abolished the incorporation of [14C]arginine but had practically no effect in the incorporation of [14C]tyrosine. Furthermore, [14C]arginyl-tRNA was a more effective donor of arginyl groups than [14C]arginine, whereas [14C]tyrosyl-tRNA was considerably less effective than [14C]tyrosine. The incorporations of [14C]arginine and [14C]tyrosine into brain proteins were from 25- to 2000-fold higher than for any other amino acid tested (12 in total). In brain [14C]arginine incorporation was higher than in liver and thyroid but somewhat lower than in kidney. In comparison to brain, the incorporation of [14C]tyrosine was negligible in liver, thyroid or kidney. Kinetic studies showed that the macromolecular factor in the brain preparation was complex. The protein nature of the products was inferred from their insolubilities in hot TCA and from the action of pronase that rendered them soluble. [14C]Arginine was bound so that its a-amino group remained free. Maximal incorporation of [14C]tyrosine in brain of 30-day-old rats was about one-third of that in the 5-day-old rat. The changes with postnatal age in the incorporation of [14C]arginine were not statistically significant.  相似文献   

7.
Abstract: Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 ± 18 and 2.1 ± 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 ± 8 and 387 ± 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

8.
The impact of inoculation with Paxillus involutus on the utilization of organic carbon compounds by birch roots was studied by feeding [14C]Glu or [14C]malate to the partners of the symbiosis, separately or in association, and by monitoring the subsequent distribution of 14C. Inoculation increased [14C]Glu and [14C]malate absorption capacities by up to eight and 17 times, respectively. Six- and 15-d-old mycorrhizal roots showed about four-fold higher [14C]Glu and [14C]malate absorption capacities compared with 60-d-old mycorrhizal roots, suggesting that the early stages of mycorrhiza formation induced higher requirements for C skeletons. Moreover, the results demonstrated that inoculation strongly modified the fate of [14C]Glu and [14C]malate. It was demonstrated that exogenously supplied Glu and malate might serve as C skeletons for amino acid synthesis in mycorrhizal birch roots and in the free-living fungus. Gln was the major 14C-sink in mycorrhizal roots and in the free-living P. involutus. In contrast, citrulline and insoluble compounds were the major 14C sinks in non-mycorrhizal roots, whatever the 14C source. It was concluded that mycorrhiza formation leads to a profound alteration of the metabolic fate of exogenously supplied C compounds. The ecological significance of amino acid and organic acid utilization by mycorrhizal plants is further discussed.  相似文献   

9.
Rat pineal organs maintained in organ culture converted [14C]tryptophan to [14C]serotonin and [14C]melatonin. The synthesis of both indoles was stimulated by the presence of norepinephrine or dibutyryl adenosine 3′,5′-monophosphate. This effect of norepinephrine could be blocked by the α-adrenergic blocking drug, propranolol, but was not modified by the a-adrenergic blocking agent, phenoxybenzamine. Neither blocking agent modified the pineal response to dibutyryl adenosine 3′,5′-monophosphate. Unlike dibutyryl adenosine 3′,5′-monophosphate, the naturally occurring adenosine phosphates did not stimulate synthesis of [14C]melatonin in vitro.  相似文献   

10.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

11.
tRNA containing N6-(Δ2-isopentenyl)adenosine may be precursors for the plant hormone cytokinin. To discriminate between tRNA containing and not containing cytokinin nucleotides, double labelling experiments were made by the use of [214C]-mevalonic acid and [3H-methyl]-methionine. At a generation cycle of 2 h for Lactobacillus acidophilus ATCC 4963, the half-lives of tRNA labelled with [3H-methyl]-methionine and [2-14C]-mevalonic acid are similar, namely 3 h. Isopentenylation of tRNA could be measured to be maximally 1:10.  相似文献   

12.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   

13.
Abstract: KCI (20–100 mM) and W-methyl-D-aspartate (NMDA, 100–1,000 μM) produce concomitant concentration-dependent increases in the release of previously captured [14C]acetylcholine and [3H]spermidine from rat striatal slices in vitro. The effects of NMDA (300μM) on striatal [14C]acetylcholine and [3H]spermidine release were blocked with equal potencies by the competitive NMDA antagonist CGP 37849, the glycine site antagonist L-689,560, and the NMDA channel blocker dizocilpine. In contrast, although NMDA-evoked [14C]acetylcholine release was antagonized by ifenprodil (IC50= 5.3 μM) and MgCl2, (IC50= 200 μM), neither compound antagonized the NMDA-evoked release of [3H]spermidine at concentrations up to 100 μM (ifenprodil) or 1 mM (MgCl2). Distinct NMDA receptor subtypes with different sensitivities to magnesium and ifenprodil therefore exist in the rat striaturn.  相似文献   

14.
Single node explants of ‘Baccara’ rose were fed through the basal cut surface with 14C-sucrose in agar. Accumulation of 14C-metabolites by buds is a steady process, while a quick uptake occurs in the stem piece during the initial stage of incubation suggesting a passive uptake at this stage. The uppermost 5-leaflet node buds had an initially higher 14C-uptake than the lowest bud. This difference disappeared after 2–3 days when growth started in both buds. Light enhanced uptake of 14C-sucrose by both stem pieces and buds. Accumulation of 14C-metabolites by buds was in direct relationship to buds deviation from the direction of gravity. This phenomenon was not evident in the stem part of the explant.  相似文献   

15.
This paper discusses the question as to whether or not the seed coat tissues can‘adapt’to a treatment with a solution containing a low osmoticum concentration, representing an environment which is sub-optimal for assimilate transport into attached surgically modified ovules. Before the start of a pulse-labelling procedure, in experiments on [14C] sucrose transport into fruits of pea (Pisum sativum) with four empty ovules, two empty ovules were filled with a low-osmolality solution (a 200 mol m?3 mannitol medium or a solution without mannitol) and the other two ovules were filled with a 400 mol m?3 mannitol medium. Pretreatment with a low-osmolality medium, during a period of 2–3 h, enhanced subsequent transport of [14C] sucrose into empty ovules filled with a low-osmolality medium, in comparison with [14C] sucrose transport into empty ovules filled with a 400mol m?3 mannitol medium during the pretreatment period. This partial recovery of sink strength of attached empty ovules can be explained as the result of a stimulation of solute efflux from seed coat cells at high cell turgor.  相似文献   

16.
13C1H double magnetic resonance was used to study the interactions and mobility of certain amino acid side-chains of collagen. Samples of collagen, labeled with [3-13C]alanine (a small hydrophobic amino acid), [methyl-13C]-methionine (a large hydrophobic), [6-13C]lysine (positively charged at physiological pH), and [5-13C]glutamic acid (negatively charged), were prepared via chick calvaria culture. 13C linewidths, lineshapes, NOE2 values, and T1 values were measured for each sample as fibrils and as native (helical) material in solution.The measured T1 and NOE values for [3-13C]alanine-labeled collagen in solution, in conjunction with an ellipsoid model for collagen, indicate that the methyl rotation rate is 2 × 1010 s?1 and that the overall rate of diffusion about the long axis is 4× 106 s?1. These values agree with values for model compounds which undergo internal methyl rotation (Lyerla & Horikawa, 1976) and with previous n.m.r. measurements of the rate of rotational diffusion of backbone ([1-13C]- and [2-13C]glycine)-labeled collagen (Jelinski & Torchia, 1979). In addition, the n.m.r. data indicate that the terminal carbons of lysine, methionine and glutamic acid in labeled collagen (both in solution and as fibrils) are characterized by reorientation rates of approximately 109 to 1010 s?1.Taken together, the n.m.r. data provide strong evidence that the contact regions between the helices in collagen fibrils are fluid and that there is not a unique set of interactions between amino acid side-chains. In this respect, these n.m.r. results support current concepts of globular protein structure which suggest that a variety of conformations, in dynamic equilibrium, are responsible for the structure and function of proteins.  相似文献   

17.
Achenes ofLactuca sativa L. cv. Grand Rapids were treated with (±) 2-[14C]-abscisic acid (ABA) at 105 - or 2-106 M for 6, 12, 24, 48 or 96 h in darkness at 24°C. They were then extracted in 80% ethanol. Two acidic diethyl ether phases which contained the free acids and the acids released after mild alkaline hydrolysis respectively, were analyzed as well as the radioactivity which remained in the final aqueous phase. For treatment durations between 6 and 96 h, the major part of the radioactivity was found in the free phase, in the form of ABA. For treatment durations up to 48 h, no radioactivity was detected at the Rf of phaseic acid or dihydrophaseic acid (free and hydrolysed phases). After 96 h culture on 105 M ABA, dihydrophaseic acid was present, but only in very small quantities. Two ABA metabolites were detected. One was characterized as β-d -glucopyranosyl abscisate since its Rf was the same as that of an authentic sample in three different solvent systems and also since it released ABA on mild alkaline hydrolysis. It increased steadily with time and represented the main metabolite. The other metabolite found in the aqueous phase after mild alkaline hydrolysis and extraction with ether at pH 3 was a very polar compound, resistant to alkaline hydrolysis in the presence of concentrated ammonia and to methylation. It was, however, metabolized by apple embryo, yielding essentially dihydrophaseic acid and an ester which released dihydrophaseic acid on mild alkaline hydrolysis. These results indicate that under the conditions tried, the metabolism of [14C]-ABA by lettuce achenes leads almost exclusively to the formation of conjugates, oxidative metabolism of ABA being almost non-existent. Separate analysis of the integuments and of the endosperm plus embryo after culture of whole achenes for 48 h in the presence of 105 M [14C]-ABA showed that ABA metabolism occurred only in the endospermembryo tissue.  相似文献   

18.
Modes of transport and metabolism of 14 C-IAA and 3 H-IAA in relation to morphogenesis of axillary buds in Scrophularia arguta. The main objectives of this study were to investigate the morphogenetic role of IAA on the growth and development of axillary buds. After foliar applications of radioactive IAA for 6 h on intact plants of Scrophularia arguta Sol. the characteristics of auxin transport were studied by liquid scintillation counting, thin layer chromatography and microautoradiography. The main part of the radioactivity moved at a mean rate of 7 mm/h. Over long periods of transport, the tracers accumulated at the base of the axis and in the roots. The nodes were a little richer in 3H or 14C than the internodes. This fact seemed to be correlated with the vascular organization of this part of the stem. A very weak proportion of tracers was found in axillary buds. The radioactivity was to about 50% associated with the IAA molecule; the rest corresponded essentially to indolyl-4-acetyl-l-aspartic acid and indolyl-3-aldehyde. Tracers were mainly concentrated in the phloem along the whole axis and, to a lesser extent in some of the young differentiating metaxylem vessels, and in the medullary rays. No radioactivity was found in the cambial zone and in the mature xylem, nor in the parenchymas. These results support the view of an indirect role of IAA on the axillary bud growth and morphogenesis.  相似文献   

19.
Abstract: The present study determined the metabolic fate of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain and also in cultures incubated in the presence of 1 or 5 mMα-ketoisocaproate (α-KIC). When astrocytes were incubated with 0.2 mM [U-13C]glutamate, 64.1% of the 13C metabolized was converted to glutamine, and the remainder was metabolized via the tricarboxylic acid (TCA) cycle. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. In control astrocytes, 8.0% of the [13C]glutamate metabolized was incorporated into intracellular aspartate, and 17.2% was incorporated into lactate that was released into the medium. In contrast, there was no detectable incorporation of [13C]glutamate into aspartate in astrocytes incubated in the presence of α-KIC. In addition, the intracellular aspartate concentration was decreased 50% in these cells. However, there was increased incorporation of [13C]glutamate into the 1,2,3-13C3-isotopomer of lactate in cells incubated in the presence of α-KIC versus controls, with formation of lactate accounting for 34.8% of the glutamate metabolized in astrocytes incubated in the presence of α-KIC. Altogether more of the [13C]glutamate was metabolized via the TCA cycle, and less was converted to glutamine in astrocytes incubated in the presence of α-KIC than in control cells. Overall, the results demonstrate that the presence of α-KIC profoundly influences the metabolic disposition of glutamate by astrocytes and leads to altered concentrations of other metabolites, including aspartate, lactate, and leucine. The decrease in formation of aspartate from glutamate and in total concentration of aspartate may impair the activity of the malate-aspartate shuttle and the ability of astrocytes to transfer reducing equivalents into the mitochondria and thus compromise overall energy metabolism in astrocytes.  相似文献   

20.
The pattern of incorporation of label into the nucleotides of axillary bud ribonucleic acid was investigated in Pisum sativum L. cv. Meteor following the application of N 6[8-I4C]furfuryladenine or of [8-14C]adenine to the root system of decapitated plants and to cultured excised buds. When N 6[8-14C]furifaryladenine was applied to the root system label was confined to the guanine nucleotide moiety of the axillary bud ribonucleic acid; label from [8-14C]adenine was incorporated preferentially into adenine nucleotide in the molar ratio adenine nucleotide/guanine nucleotide = 3.23. When isolated buds were incubated in media containing [8-14C]adenine or N 6[8-14C]furfuryladenine, label was incorporated into both purine moieties of the ribonucleic acid. However, the relative incorporation into the guanine nucleotide fraction was considerably greater for N 6[8-I4C]furfuryladenine (adenine nucleotide/guanine nucleotide = 2.23) than for [8-14C]adenine (ratio = 4.67).
It was concluded that the pattern of metabolism of adenine to guanine and its incorporation into the guanine nucleotide moiety of pea axillary bud ribonucleic acid, is influenced by the presence of a substitution in the N 6 position of the adenine base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号