首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous levels of cambial region abscisic acid (ABA) were quantified by immunoassay and assessed together with cambial growth activity in poplar (Populus nigra L. × P. maximowiczii Henry, clone Kamabuchi) over the course of a growing season. The level of cambial region ABA increased from spring to late-summer but decreased sharply in autumn. Cambial growth activity, measured as the radial number of undifferentiated cambial cells and enlarging xylem cells, also increased from spring to summer and decreased sharply in autumn, indicating the onset of cambial dormancy. Exogenous ABA, applied laterally to poplar stems at two times within the growing season, enhanced cambial growth activity, as the radial number of undifferentiated cambial cells increased in ABA-treated trees subsequent to the two application times. Xylem cell development was also affected by exogenous ABA as fibre length increased significantly in ABA-treated trees at both application times. The positive correlation of cambial region ABA and cambial growth activity as well as the positive effects of exogenous ABA application thereon sheds new light on the role of this hormonal growth regulator.  相似文献   

2.
Summary The current notion that hormonal level and cell response are clearly correlated has often been challenged recently. During the period of cambial activity, auxin content seems to control the intensity of mitosis and some features of the resulting wood, but not the duration of the active period itself. During cambial rest, the indole-3-acetic acid (IAA) level often remains high in the cambium, but the cell sensitivity to auxin is low. The decrease of auxin transport in autumn is sometimes interpreted as a major qualitative change affecting the pattern of transport, and sometimes as a secondary change occurring later than rest onset. The causes of the seasonal variation of cambial response remain unknown. A hypothesis is proposed that accounts for the structural-functional changes occurring in cambial cells during the onset of dormancy. Abscisic acid (ABA) may reduce wood production and xylem cell enlargement in late summer. An important amount of ABA may be present in the cambial zone in autumn after drought stress and in spring in the young growing shoot. Changes in ABA level do not appear to be clearly correlated with the different steps of cambial rest and activity. Beyond the role of ABA as a stress mediator, its participation in the annual regulation of cambial activity remains unclear. Its distribution in the most alkaline compartments may account for the particularities of its seasonal activity. The involvement of IAA and ABA in cambial growth is discussed within the scope of a possible annual alternation of two different metabolisms in the cambial cell.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GA gibberellic acid - GC-MS gas chromatography-mass spectrometry - IAA indole-3-acetic acid - PA phaseic acid - RNA ribonucleic acid - SICM single ion current monitoring - SIM selected ion monitoring  相似文献   

3.
4.
The regulation of cell-division activity in the vascular cambium and of secondary xylem and phloem development is reviewed for temperate-zone tree species in relation to auxins, gibberellins, abscisic acid, cytokinins, and ethylene. Representatives of the first four of these PGR classes (IAA, GA1, GA4, GA7, GA9, GA20, ABA, Z, ZR, DCA) have been identified conclusively by mass spectrometry in the cambial region in some Pinaceae, but not in any hardwood species. Endogenous ethylene has yet to be definitively characterized in this region in any species. Evidence concerning the source and metabolism of cambial PGRs is scanty and inconclusive for both conifers and hardwoods.Most cambial PGR research has focused on IAA. Much evidence indicates that this PGR is transported primarily in the cambial region at a rate of about 1 cm h–1, and that the transport is basipetally polar. GC-MS measurements have established that endogenous IAA levels in the cambial region of Pinaceae are highest during earlywood development, and that cambial IAA levels may be considerably lower in hardwoods than in conifers. IAA appears to be involved in the control of cambial growth in conifers and hardwoods in at least three specific ways, viz. maintenance of the elongated form of fusiform cambial cells, promotion of radial expansion in primary walls of cambial derivatives, and regulation of reaction wood formation. In addition, it is well established that exogenous IAA promotes vessel development in hardwoods. In both conifers and hardwoods, exogenous IAA stimulates cambial growth in 1-year-old shoots treated late in the dormant period or after the start of the cambial growing period. However, exogenous IAA has little effect on cambia that are older or are in what is hypothesized to be the resting stage of dormancy. Thus it is uncertain whether IAA is directly involved in the control of cambial growth, or acts indirectly through a process such as hormone-directed transport.It is not yet clear if gibberellins play a role in the control of cambial growth in conifers. However, in hardwoods, there is evidence that they inhibit vessel development and act synergistically with IAA in promoting cambial activity and fiber elongation. In both conifers and hardwoods, foliar sprays of gibberellins increase the accumulation of biomass above-ground, particularly in the main axis, while decreasing it in the roots.There are as yet no definite conclusions to be drawn concerning the involvement of ABA, cytokinins, and ethylene in the regulation of cambial growth in conifers or hardwoods. In conifers, ABA may antagonize the promotory effect of IAA on cambial cell division and tracheid radial expansion under conditions of water stress, but high endogenous ABA levels do not appear to be associated with the formation of latewood or the onset of cambial dormancy. Some evidence suggests that exogenous cytokinins enhance the promotory effect of IAA on cambial growth, particularly ray formation, in both hardwoods and conifers. However, exogenous cytokinins, by themselves, appear to be ineffective. In hardwoods, ethylene-generating compounds satisfy the chilling requirement of the dormant cambium and promote the formation of wood having an apparently greater content of lignin and extractives. Ethylene-generators also affect wood development in conifers and accelerate cambial growth at the application site in both hardwoods and conifers.  相似文献   

5.
The cambial activity and periodicity of secondary xylem and phloem formation have been less studied in tropical tree species than in temperate ones. This paper describes the relationship between seasonal cambial activity, xylem and phloem development, and phenology in Schizolobium parahyba, a fast growing semideciduous seasonal forest tree from southeastern Brazil. From 2002 to 2003, wood samples were collected periodically and phenology and climate were recorded monthly in the same period. S. parahyba forms annual growth increments in wood, delimited by narrow initial parenchyma bands. The reduction of the cambial activity to a minimum correlates to the dry season and leaf fall. The higher cambial activity correlates to the wet season and the presence of mature leaves. In phloem, a larger conductive region was observed in the wet season, when the trees were in full foliage. The secondary phloem did not exhibit any incremental zone marker; however, we found that the axial parenchyma tends to form irregular bands.  相似文献   

6.
Circular patches of bark were surgically isolated on the sides of trembling aspen (Populus tremuloides Michx.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control trees cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) did not prevent initiation of cambial activity and of phloem differentiation in spring but continued normal cambial activity and phloem developmented were prevent. Xylem differentiation was essentially prevented by isolation of tissues during the dormant season. The ultimate effect of isolation of the bark on the cambium, either during the dormant season or during the growing season, was subdivision of all fusiform cambial cells into strands of parenchymatous elements; the ultimate effect on the newly formed phloem was early death of the sieve elements. The most conspicuous effect of isolation of the bark after xylem differentiation had begun was the curtailment of secondary wall formation. Shortening of cells of the cambial region was reflected in the length of the vessel members which differentiated from such cells. These results indicate that normal cambial activity and xylem and phloem development require a supply of currently translocated regulatory substances from the shoots.  相似文献   

7.
Uggla C  Magel E  Moritz T  Sundberg B 《Plant physiology》2001,125(4):2029-2039
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.  相似文献   

8.
Munessa Forest is a mountain forest in south-eastern Ethiopia experiencing seasonal rainfall variation. We investigated seasonal cambial activity and dormancy from increment rates of four different tree species belonging to varying life forms, namely, evergreen native conifer (Podocarpus falcatus), evergreen introduced conifer (Pinus patula), evergreen broadleaved tree (Prunus africana) and deciduous broadleaved tree (Celtis africana). Measurements of stem radius fluctuations were registered with the help of high-resolution electronic dendrometers. Daily amplitudes of stem diameter variations and daily and monthly net growth rates were determined and related to climatic variables measured at local climate stations. Thin sections of wood collected with a microcorer every 3–6 weeks allowed a visual control of newly formed wood cells during consecutive time intervals. Lack of water availability during the long dry season induced cambial dormancy of 5–7 months depending on life forms. After the onset of the short rainy season, stem swelling started quite synchronously with a variation of only single days in all studied species. Evergreen tree species were able to initiate wood formation during the short rainy season, whereas growth in the deciduous broadleaved species started in the long rainy season. The acquired data provide a basis for delineating the species-specific growth boundaries and the duration of the cambial growing season.  相似文献   

9.
The plasma membrane H(+)-ATPase (PM H(+)-ATPase), potassium ions, and endogenous ion currents might play a fundamental role in the physiology of cambial growth. Seasonal changes of these parameters were studied in twigs of Populus nigra and Populus trichocarpa. Monoclonal and polyclonal antibodies against the PM H(+)-ATPase, x-ray analysis for K(+) localization and a vibrating electrode for measurement of endogenous ion currents were used as probes. In dormant plants during autumn and winter, only a slight immunoreactivity against the PM H(+)-ATPase was found in cross sections and tissue homogenates, K(+) was distributed evenly, and the density of endogenous current was low. In spring during cambial growth, strong immunoreactivity against a PM H(+)-ATPase was observed in cambial cells and expanding xylem cells using the monoclonal antibody 46 E5 B11 F6 for fluorescence microscopy and transmission electron microscopy. At the same time, K(+) accumulated in cells of the cambial region, and strong endogenous current was measured in the cambial and immature xylem zone. Addition of auxin to dormant twigs induced the formation of this PM H(+)-ATPase in the dormant cambial region within a few days and an increase in density of endogenous current in shoot cuttings within a few hours. The increase in PM H(+)-ATPase abundance and in current density by auxin indicates that auxin mediates a rise in number and activity of an H(+)-ATPase in the plasma membrane of cambial cells and their derivatives. This PM H(+)-ATPase generates the necessary H(+)-gradient (proton-motive force) for the uptake of K(+) and nutrients into cambial and expanding xylem cells.  相似文献   

10.
AMOBI  C. C. 《Annals of botany》1973,37(1):211-218
Freshly prepared chlor-zinc-iodide was used to determine theperiodicity of wood formation at breast height (144 cm fromthe ground) in the trunks of some trees growing in the LowlandRainforest around Ibadan, Nigeria. Wood formation shows seasonal periodicity in the plants studied.The cambial derivates on the xylem side differentiate into woodcells, which at a certain stage of differentiation have abundantcellulose in their secondary walls. The cellulose stains deepblue in chlor-zinc-iodide. This has been used as a criterionfor deciding that wood formation has started. When no cellswith deep blue staining secondary walls are found the cambiumis known to be dormant or quiscent. The resumption of cambial activity is correlated positivelywith bud break and unfolding of new leaves. In Bombax buonopozenseP. Beauv. the relationship may be obscured by local cambialactivity induced by injury. Wood formation stops in the trunks either towards the end ofthe rainy season or at the early part of the dry season. Itstarts either during the dry season or at the beginning of therainy season; but the bulk of the wood is formed during therainy season. Cambial activity stops in most cases before leaffall. At the cessation of wood formation the fully lignifiedxylem elements abut on the xylem mother cells or on xylem cellswith incompletely thickened cell walls. Presence or absence of a starch-free-zone and the noding ofthe vascular rays also give indications of seasonal periodicityin wood formation. Growth rings are periodic and one growthring is generally formed each year.  相似文献   

11.
Intra-annual density fluctuations (IADFs) are anatomical features formed in response to changes in the environmental conditions within the growing season. These anatomical features are commonly observed in Mediterranean pines, being more frequent in younger and wider tree rings. However, the process behind IADF formation is still unknown. Weekly monitoring of cambial activity and wood formation would fill this void. Although studies describing cambial activity and wood formation have become frequent, this knowledge is still fragmentary in the Mediterranean region. Here we present data from the monitoring of cambial activity and wood formation in two diameter classes of maritime pine (Pinus pinaster Ait.), over two years, in order to test: (i) whether the differences in stem diameter in an even-aged stand were due to timings and/or rates of xylogenesis; (ii) if IADFs were more common in large trees; and (iii) if their formation is triggered by cambial resumption after the summer drought. Larger trees showed higher rates of cell production and longer growing seasons, due to an earlier start and later end of xylogenesis. When a drier winter occurs, larger trees were more affected, probably limiting xylogenesis in the summer months. In both diameter classes a latewood IADF was formed in 2012 in response to late-September precipitation, confirming that the timing of the precipitation event after the summer drought is crucial in determining the resumption of cambial activity and whether or not an IADF is formed. It was the first time that the formation of a latewood IADF was monitored at a weekly time scale in maritime pine. The capacity of maritime pine to adjust cambial activity to the current environmental conditions represents a valuable strategy under the future climate change conditions.  相似文献   

12.
The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50–60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20–25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the periods of early and late wood formation. The development of the current-year phloem in the stems of 50–60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10–20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.  相似文献   

13.
The vessel areas of ten beech trees growing on a dry site were measured separately for all tree rings using automatic image analysis. These data were correlated with the monthly amount of precipitation from the July prior to the growing season until the August of the current growing season. It is evident that vessel formation at the beginning of cambial activity is mainly controlled by internal factors. The rainfall in the previous summer and autumn and in the contemporary May had only a slight influence. Vessel formation towards the end of the cambial activity is strongly influenced by the July rainfall and is thus determined to a greater degree by external factors. These results are discussed on the basis of hypotheses of tree physiology.  相似文献   

14.
The seasonal change of free abscisic acid (ABA) and indole-3-acetic acid (IAA) and their relationship with the cambial activity in Eucommia ulmoides trees were investigated by ABA and IAA immunolocalization using primary polyclonal and rhodamine-red fluorescing secondary antibodies, ABA and IAA quantification using high performance liquid chromatography (HPLC), and systematic monitoring of vascular cell layers production. ABA and IAA clearly displayed opposite annual distribution patterns. In the active period (AP), both immunolocalization and HPLC detected an abrupt decrease of ABA, reaching its lowest level in the summer. During dormancy, ABA started increasing in the first quiescence (Q1) (autumn), peaked in the rest (winter), and gradually decreased from the onset of the second quiescence (Q2) (the end of winter). IAA showed a reverse pattern to that of ABA: it sharply increased in AP, but noticeably decreased from the commencement of Q1. Longitudinally, the ABA distribution increased apico-basally, contrasting with IAA. Laterally, most of the ABA was located in mature vascular tissues, whereas the IAA essentially occurred in the cambial region. The concomitant IAA-ABA distribution and seasonal changes in vascular tissues greatly correlated with xylem and phloem cell production, and late wood differentiation and maturation. Interestingly, the application of exogenous ABA to quiescent E. ulmoides branches, in a water-culture system, inhibited external IAA action on cambial activity reactivation. These results suggest that, in E. ulmoides, ABA and IAA might probably interact in the cambial region. The annual cambial activity could be influenced by an IAA:ABA ratio; and ABA might play a key role in vascular cambium dormancy in higher plants. The relationship between hormonal changes and the (particular) annual life cycle of E. ulmoides is also discussed.  相似文献   

15.
The cambial tissues of a Populus balsamifera, Balsam poplar clone were studied during a growth season. The Klason and acid-soluble lignin contents were determined as well as the carbohydrate monomer distribution and the protein content. Both the phloem and the xylem sides of the cambial region were examined. The samples were analyzed by thioacidolysis and structures of dimeric products were determined by mass spectrometry after desulphuration. Chemical analysis of samples during the growth season was combined with microscopy of embedded specimens that showed the state of cell differentiation at the time of sampling. In spring and early summer, growth is very rapid and the intention was to collect tissue in which exclusively the middle lamella/primary cell wall had begun to lignify. The Klason lignin, protein content and carbohydrate monomer distribution showed that all the specimens from the cambial tissues sampled during a growth season contained predominantly middle lamella and primary walls; except for the developing xylem sampled in August where the carbohydrate composition showed that secondary walls were present. Thioacidolysis showed that the lignin from the cambial tissues had more condensed structures than the lignin from the reference balsam poplar clone wood. More guaiacyl than syringyl units were detected and mass spectrometry showed that the cambial tissues contained more lignin structures with end-groups than the reference sample. These results suggest that lignification in the cambial layer and early developing xylem may take place predominantly in a bulk fashion during the summer.  相似文献   

16.
The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010–2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.  相似文献   

17.
Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R(2) = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.  相似文献   

18.
通过对祁连山中部葫芦沟流域的祁连圆柏连续采集微树芯,对其形成层活动和径向生长动态进行了连续两年的监测研究。结果表明,2012年细胞壁加厚和细胞成熟阶段开始时间分别发生在6月26日和7月24日,比2013年细胞壁加厚(6月22日)和细胞成熟阶段(6月26日)开始时间分别晚5 d和28 d。2012年细胞扩大、细胞壁加厚和细胞成熟阶段结束时间分别为7月16日、8月9日和9月8日,比2013年各阶段结束时间分别晚7、28 d和24 d。2012年最大细胞分裂速率为0.33细胞/d,共形成20.9个细胞,细胞分裂速率和木质部细胞总数均高于2013年。通过与附近气象站记录的气象数据进行对比,发现祁连圆柏生长开始时间在温暖年份显著早于寒冷年份,说明祁连圆柏的径向生长开始时间与温度有关。但2013年春季和夏初的高温导致区域干旱程度加剧,使祁连圆柏生长结束时间显著早于2012年,并导致2013年的木质部细胞总量和生长速率都小于2012年。研究表明,在寒冷干旱地区,尽管升温会使生长季提前,但升温导致的干旱胁迫可能对树木的生长速率和木质部细胞总量产生重要影响。  相似文献   

19.
《Plant Ecology & Diversity》2013,6(3-4):365-375
Background: Temperature directly affects xylogenesis at high-elevation treelines. The low-temperature limitation of meristematic processes is thus key to understand treeline formation.

Aims: We aimed to experimentally test in situ the direct low-temperature effect on wood tissue formation at the alpine treeline.

Methods: We applied controlled Peltier-mediated cooling and warming (±3 K) to branch segments in Pinus uncinata at the treeline in the Swiss Alps. In addition, we studied xylogenesis in untreated trees during the growing season by sequential micro-coring.

Results: Micro-cores indicated that the cambial zone was fully developed by the time the cooling and warming treatment started, shortly after snowmelt. Presumably, because of this, experimental cooling of branches did not significantly reduce the number of cells produced per season. Warming extended the formation of early wood into the late season, and thus reduced the fraction of late wood.

Conclusions: We conclude that temperatures very early in the season determine the width of the cambial zone which, in turn, strongly controls the number of tracheids produced during the remaining growing season. Temperatures later in the season mainly determine the early wood to late wood ratio. These data provide an empirical basis for the mechanistic understanding of tree growth at the treeline in response to temperature.  相似文献   

20.
The seasonal effect is the most significant external source of variation affecting vascular cambial activity and the development of newly divided cells, and hence wood properties. Here, the effect of edapho-climatic conditions on the phenotypic and molecular plasticity of differentiating secondary xylem during a growing season was investigated. Wood-forming tissues of maritime pine (Pinus pinaster) were collected from the beginning to the end of the growing season in 2003. Data from examination of fibre morphology, Fourier-transform infrared spectroscopy (FTIR), analytical pyrolysis, and gas chromatography/mass spectrometry (GC/MS) were combined to characterize the samples. Strong variation was observed in response to changes in edapho-climatic conditions. A genomic approach was used to identify genes differentially expressed during this growing season. Out of 3512 studied genes, 19% showed a significant seasonal effect. These genes were clustered into five distinct groups, the largest two representing genes over-expressed in the early- or late-wood-forming tissues, respectively. The other three clusters were characterized by responses to specific edapho-climatic conditions. This work provides new insights into the plasticity of the molecular machinery involved in wood formation, and reveals candidate genes potentially responsible for the phenotypic differences found between early- and late-wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号