首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-inoculation of plant growth promoting rhizobacteria (PGPR)withBradyrhizobium has been shown to increase legume nodulationand nitrogen fixation at optimal soil temperatures. Nine rhizobacteriaco-inoculated withBradyrhizobium japonicum532C were tested fortheir ability to reduce the negative effects of low root zonetemperature (RZT) on soybean [Glycine max(L.) Merr.] nodulationand nitrogen fixation. Three RZTs were tested: 25 (optimal),17.5 (somewhat inhibitory), and 15°C (very inhibitory).At each temperature some PGPR strains increased the number ofnodules formed and the amount of fixed nitrogen when co-inoculatedwithB. japonicum,but the stimulatory strains varied with temperatures.The strains that were most stimulatory varied among temperaturesand were as follows: 15°C,Serratia proteamaculans 1-102;17.5°C,S. proteamaculans 1-102andAeromonas hydrophilaP73;25°C,Serratia liquefaciens2-68. Bradyrhizobium japonicum ; Glycine max; plant growth promoting rhizobacteria; suboptimal root zone temperatures  相似文献   

2.
Dashti  N.  Zhang  F.  Hynes  R.  Smith  D.L. 《Plant and Soil》1997,188(1):33-41
We previously reported that application of plant growth-promoting rhizobacteria (PGPR) increased soybean growth and development and, specifically, increased nodulation and nitrogen fixation over a range of root zone temperatures (RZTs) in controlled environment studies. In order to expand on the previous studies, field experiments were conducted on two adjacent sites, one fumigated with methyl bromide and one nonfumigated, in 1994. Two experiments were conducted at each site, one involving combinations of two soybean cultivars and two PGPR strains, the other involving the same factors, but also in combination with two strains Bradyrhizobium japonicum. Soybean grain yield and protein yield were measured. The results of these experiments indicated that co-inoculation of soybean with B. japonicum and Serratia liquefaciens 2-68 or Serratia proteamaculans 1-102 increased soybean grain yield, protein yield, and total plant protein production, compared to the nontreated controls, in an area with low spring soil temperatures. Interactions existed between PGPR application and soybean cultivar, suggesting that PGPRs applied to cultivars with higher yield potentials were more effective. PGPRs applied to the rhizosphere without addition of B. japonicum also increased only leaf area and seed number at the fumigated site. Overall, inoculation of soybean plants with PGPRs in the presence of B. japonicum increased soybean grain yield, grain protein yield, and total plant protein production under short season conditions.  相似文献   

3.
A 3 × 2 × 2 factorial field experiment, organized in a randomized complete block split-plot with four replications, was conducted in 1994 to evaluate the effect of two plant growth-promoting rhizobacteria (PGPR) strains (Serratia liquefaciens 2-68 or Serratia proteamaculans 1-102) on nodulation, nitrogen fixation, and total nitrogen yield by two soybean cultivars in a short season area. The experiments were conducted at the Emile A. Lods Research Centre, McGill University, Macdonald Campus, Montreal, Canada, and performed at two adjacent sites. One site was fumigated with methyl bromide (50 g m-2). Another site was kept unfumigated. Co-inoculation of soybean with B. japonicum and PGPR increased soybean nodulation and hastened the onset of nitrogen fixation, when the soils were still cool. Total fixed N, fixed N as a percentage of total plant N, and protein and N yield were also increased by PGPR inoculation. AC Bravor tended to be more responsive to both PGPR treatments for total fixed N and N yields than Maple Glen, suggesting that inoculation with PGPR was more effective for cultivars with higher yield potentials.  相似文献   

4.
FYSON  A.; SPRENT  J. I. 《Annals of botany》1982,50(5):681-692
The development of primary root nodules on the field bean (Viciafaba L.) grown at 10 and 18 °C was examined. The sequenceof anatomical changes observed was the same in both temperatureregimes. Nodules developed much more slowly at 10 °C andthe nodules were much larger when corresponding anatomical changesoccurred. Primary root nodules eventually ceased growth in bothtemperature regimes but ultimate nodule volume was nearly twiceas great as 10 °C as at 18 °C. The larger size did notcompensate for the lower specific nitrogenase activity of cold-grownnodules: nitrogen fixation (acetylene reduction) rates on awhole plant basis were much lower at 10 °C than at 18 °C.There was no difference in the total number of primary rootnodules in the two temperature regimes but their distributionwas biased towards the upper part of the root and the epicotylat 18 °C. Vicia faba L., field bean, nodulation, nitrogen fixation, temperature  相似文献   

5.
The growth of white clover (Trifolium repens L.) in conditionstypical of April in Southern England (8 °C day/4 °Cnight, 12 h photoperiod of 90 J m–2 s–1 visibleradiation) was extremely slow, whether the plants were dependentfor nitrogen on fixation by their root nodules or were suppliedwith abundant nitrate; although growth was slower in the nodulatedplants. The reasons for slow growth were a large root: shootratio and a small leaf area, particularly in the nodulated plants,and a low photosynthetic rate in all plants. The probable effectsof these characteristics on the growth of white clover withgrasses in mixed pastures are discussed. Trifolium repens L, white clover, low temperature, leaf area, photosynthetic rate, nitrogen supply, growth  相似文献   

6.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

7.
Jasmonic acid (JA) and methyl jasmonate, collectively known as jasmonates, are naturally occurring in plants; they are important signal molecules involved in induced disease resistance and mediate many physiological activities in plants. We studied the effect of JA and its methyl ester, methyl jasmonate (MeJA), on the induction of nod genes in Bradyrhizobium japonicum GG4 (USDA3) carrying a plasmid with a translational fusion between B. japonicum nodY and lacZ of Escherichia coli, and the expression activity was measured by β-galactosidase activity. Both JA and MeJA strongly induced the expression of nod genes. They have little or no deleterious effects on the growth of B. japonicum cells, while genistein (Gen) showed inhibitory effects. We further studied the effect of JA- and MeJA-induced B. japonicum on soybean nodulation and nitrogen fixation under optimal (25°C) and suboptimal (17°C) root zone temperature (RZT) conditions. B. japonicum cells were grown in liquid yeast extract mannitol media and induced with a range of Gen, JA, and MeJA concentrations, including a treatment control with no inducer added. Soybean seedlings were grown at 25 or 17°C RZT with a constant air temperature (25°C) and inoculated, at the vegetative cotyledonary stage, with various B. japonicum induction treatments. Addition of Gen or jasmonates to B. japonicum, prior to inoculation, enhanced nodulation, nitrogen fixation, and plant growth at suboptimal RZT conditions. A higher concentration of Gen was inhibitory at 25°C, while this same concentration was stimulatory at 17°C. Interestingly, pre-incubation of B. japonicum with JA and MeJA enhanced soybean nodulation and nitrogen fixation under both optimal and suboptimal RZTs. We show that jasmonates are thus a new class of signaling molecules in the B. japonicum-soybean symbiosis and that pre-induction of B. japonicum with jasmonates can be used to enhance soybean nodulation, nitrogen fixation, and early plant growth.  相似文献   

8.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

9.
Rye (Secale cereale cv. Rheidol) and wheat (Triticum aestivumcv. Mardler) were grown at shoot/root temperatures of 20/20°C (warm grown, WG plants), 8/8 °C (cold grown, CG plants)and 20/8 °C (differential grown, DG plants). Plants fromcontrasting growth temperature regimes were standardized andcompared using a developmental timescale based on accumulatedthermal time (°C d) at the shoot meristem. Accumulationof dry matter, nitrogen and potassium were exponential overthe time period studied (150–550 °C d). In rye, therates of plant dry matter and f. wt accumulation were linearlyrelated to the temperature of the shoot meristem. However, inwheat, although the rates of plant dry matter and f. wt accumulationwere temperature dependent, the linear relationship with shootmeristem temperature was weaker than in rye. The shoot/rootratio of rye was stable irrespective of growth temperature treatment,but the shoot/root ratio of wheat varied with growth temperaturetreatment. The shoot/root ratio of DG wheat was 50% greaterthan WG wheat. In both cereals, nutrient concentrations anddry matter content tended to be greater in organs exposed directlyto low temperatures. The mean specific absorption rates of nutrientswere calculated for the whole period studied for each species/temperaturecombination and were positively correlated with both plant shoot/rootratio and relative growth rate. The data suggest that nutrientuptake rates were influenced primarily by plant demand, withno indication of specific nutrient limitations at low temperatures. Nutrient accumulation, relative growth rate (RGR), rye, Secale cereale cv. Rheidol, temperature, thermal time, Triticum aestivum cv. Mardler, wheat  相似文献   

10.
Inhibition of Nodule Development in Soybean by Nitrate or Reduced Nitrogen   总被引:5,自引:1,他引:4  
Imsande, J. 1986. Inhibition of nodule development in soybeanby nitrate or reduced nitrogen.—J. exp. Bot. 37: 348–355. Nodulation of hydroponically grown soybean plants [Glycine max(L.) Merr.] is inhibited by continuous growth in the presenceof 4· mol m–3 KNO3 The presence of 4·0 molm–3 ‘starter nitrate’ for 3-6 d during noduledevelopment, however, subsequently stimulates nodule dry weightaccumulation and nitrogenase activity. These stimulations occureven though 4· mol m–3 nitrate temporarily delaysnodule development, i.e. the late steps of nodule developmentare reversibly inhibited by a short-term exposure to 4·0mol m–3 nitrate. On the other hand, treatment with 4·0mol m–3 nitrate in excess of 14 d significantly reducesnodule dry weight Thus, extended growth in the presence of 4·0mol m–3 KNO3 seems to block both early and late stepsof nodule development. Nodulation of hydroponically grown soybeansis also inhibited by continuous growth in the presence of 2·0mol m–3 (NH4)2SO4 This inhibition is not caused by acidityof the growth medium. On the other hand, nodule development6 d after inoculation with Rhizoblum japonicum is not delayedby a 7-d exposure to 2·0 mol m–3 (NH4)2SO4 butis partially inhibited by a prolonged exposure to (NH4)2SO4Because repression of nodulation by 4·0 mol m–3KNO3 is more severe than that by 2·0 mol m–3 (NH4)2SO4and because ammonium taken up by the soybean plant is not activelyoxidized to nitrate, it is suggested that there are at leasttwo mechanisms by which nitrate utilization represses noduleformation in soybean. Key words: Glycine max, nitrogen, nitrogen fixation, nodulation  相似文献   

11.
A potential bacterial strain designated as NII-0928 isolated from Western ghat forest soil with multiple plant growth promoting attributes, and it has been identified and characterized. Plant growth promoting traits were analyzed by determining the P-solubilization efficiency, Indole acetic acid production, HCN, siderophore production and growth in nitrogen free medium. It was able to solubilize phosphate (76.6 μg ml−1), and produce indole acetic acid (58.9 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). 16S rRNA gene sequencing reveals the identity of the isolate as Serratia nematodiphila with which it shares highest sequence similarity (99.4%). Seed bacterization with black pepper cuttings in greenhouse trials using Sand: Soil: FYM with three individual experimental sets with their respective control showed clearly the growth promoting activity. Hence, Serratia nematodiphila NII-0928 is a promising plant growth promoting isolate showing multiple PGPR attributes that can significantly influence black pepper cuttings. The result of this study provides a strong basis for further development of this strain as a bioinoculants to attain the desired plant growth promoting activity in black pepper growing fields.  相似文献   

12.
Breeze, V. G. and Hopper, M. J. 1987. The uptake of phosphateby plants from flowing nutrient solution. IV. Effect of phosphateconcentration on the growth of Trifolium repens L. suppliedwith nitrate, or dependent upon symbiotically fixed nitrogen.—J.exp. Bot. 38: 618–630. Nodulated white clover plants were subjected to a range of phosphateconcentrations in flowing solution culture (0.32 to 8.0 mmolm–3 P) at 41 d from sowing, either supplied with nitrateor dependent on symbiotically-fixed nitrogen. No effect of phosphateconcentration in solution on dry matter production, relativegrowth rate, root/shoot ratio, or water soluble carbohydrateconcentration of the plant tissue was observed after 24 d fromthe start of the experiment, although the plants supplied withnitrate yielded more than the others. Phosphate uptake throughoutthe experimental period was related to the solution concentration,but the source of nitrogen did not affect the phosphorus concentrationsof the shoots. However, the roots of the plants dependent onsymbiotically-fixed nitrogen had higher concentrations of phosphorusthan those supplied with nitrate, but this did not appear tobe due to an increased phosphorus requirement for nitrogen fixation,because the amount fixed was unaffected by the phosphate concentrationin solution. The cation-anion balance showed that plants dependenton nitrogen fixation had no larger requirement for calcium thanplants supplied with nitrate, but a requirement for hydroxylions equivalent to over 130 kg lime per tonne of dry shoot.It is suggested that the enhanced phosphate uptake by plantsdependent on nitrogen fixation is due to this need for a cation-chargebalancing anion. Key words: Phosphate uptake, nitrogen fixation, Trifolium repens L., repens L., cation-anion balance, flowing solution culture  相似文献   

13.
Imsande, J. 1986. Nitrate-ammonium ratio required for pH homeostasisin hydroponically grown soybean.—J. exp. Bot. 37: 341–347. Plant acid-base homeostasis is achieved when the mmoles of hydroxylions produced in the plant equal the mmoles of protons. Reductionof nitrate to ammonia is the major source of hydroxyl ions whereasammonium uptake-assimilation and the metabolism of neutral sugarsto organic acids are the primary sources of protons. Soybean[Glycine max (L.) Merr plants were grown hydroponically on mediumsupplemented with 3·0 mol m–3 nitrogen providedas various combinations of KNO3 and NH4NO3 Plant growth consumedessentially all available nitrogen in each case; however, onlyin flasks supplemented with approximately 1·8 minolesof KNO3 plus 0·6 mmole of NH4NO3 was the pH of the mediumunchanged. Thus, for every mmole of nitrogen assimilated, approximately0·6 mmole of dissociable protons must have been producedby the conversion of neutral sugars to carboxylic acids. Also,it was shown that a plant obtaining all of its nitrogen fromnitrate must neutralize or excrete approximately 0·5mmole of hydroxyl ion d–1. Conversely, the plant derivingall of its nitrogen from dinitrogen must excrete or neutralizeat least 0·8 mmole of hydrogen ion d–1 whereasthe plant deriving all of its nitrogen from aminonium must excreteor neutralize approximately 2·1 mmoles of hydrogen iond–1. Nevertheless, plants grown on medium supplementedwith 2·4 mol m–1 nitrate plus 0·6 mol m–3ammonium did not achieve a higher growth rate than plants grownon 3·0 mol m–3 nitrate. Key words: Glycine max, nitrogen fixation, nitrate utilization  相似文献   

14.
Ryle, G. J. A., Powell, C. E. and Gordon, A. J. 1988. Responsesof N2 fixation-linked respiration to host-plant energy statusin white clover acclimated to a controlled environment.—J.exp. Bot. 39: 879–887. Single plants of white clover, acclimated to a controlled environmentand dependent for nitrogen on N2 fixation in their root nodules,were darkened, defoliated or exposed to enhanced CO2 levelsto establish the quantitative relationships between the photosynthesisof the host plant and the N2 fixation metabolism of root nodules. The nodule respiration associated with N2 fixation (FLR) declinedrapidly to 10–15% of its normal rate following plant darkeningearly in the photoperiod. Darkening at progressively later intervalsduring the photoperiod demonstrated a positive, apparently linearrelationship between duration of illumination and total FLRduring the photoperiod and the following night period. Completeor partial defoliation reduced FLR according to the leaf arearemoved: again, there was a strong positive correlation betweencurrent rate of photosynthesis, whether of defoliated or undefoliatedplants and the FLR of root nodules. Doubling the current rateof photosynthesis, by enhancing CO2 levels around the shoots,promoted FLR within 1–2 h when plants were stressed bylack of light. However, enhanced CO2 levels increased FLR onlyslowly over a period of several hours in plants entrained tothe normal growing conditions. It is concluded that, in these plants acclimated to a uniformand favourable controlled environment, the supply and utilizationof photosynthetic assimilate in N2 fixation was finely balancedand quantitatively linked during a single diurnal period andthat nodule functioning was not depressed by lack of energysubstrate. Key words: White clover, N2 fixation, photosynthesis.  相似文献   

15.
Single plants of white clover, grown in a controlled environmentand dependent for nitrogen on fixation in their root nodules,were defoliated once by removing approximately half their shoottissue. Their regrowth was compared with the growth of comparableundefoliated plants. Two similar experiments were carried out:in the first, plants were defoliated at 2.5 g, and in the secondat 1.2 g total plant d. wt. Defoliation reduced rate of N2 fixation by > 70 per cent,rate of photosynthesis by 83–96 per cent, and rate ofplant respiration by 30–40 per cent. Nodule weights initiallydeclined following defoliation as a result of loss of carbohydratesand other unidentified components. No immediate shedding ofnodules was observed but nodules on the most severely defoliatedplants exhibited accelerated senescence. The original rates of N2 fixation were re-attained after 5–6or 9 d regrowth, with increase in plant size at defoliation.In general, the rate of recovery of N2 fixation was relatedto the re-establishment and increase of the plant's photosyntheticcapacity. Throughout the growth of both defoliated and undefoliatedplants nodule respiration (metabolism) accounted for at least23 ± 2 per cent of gross photosynthesis. The unit ‘cost’of fixing N2 in root nodules, in terms of photosynthate, appearedto be unaffected by defoliation, except perhaps for plants veryrecently defoliated. Similarly, the percentage nitrogen contentsof shoot, root and nodules of defoliated plants became adaptedwithin a few days to those characteristic of undefoliated plants. Trifolium repens, white clover, N2 fixation, defoliation, photosynthesis, respiration  相似文献   

16.
Gomes, M. A. F. and Sodek, L. 1987. Reproductive developmentand nitrogen fixation in soybean (Glycine max (L.) Merril).—J.exp. Bot. 38: 1982–1987. Nitrogenase activity (acetylene reduction) was measured duringthe growth cycle of soybean plants induced to flower at twodifferent ages. The decline in nitrogenase activity towardsthe end of the cycle was clearly associated with pod-fillingfor both flowering dates when plants were cultivated under lowerlight and temperature conditions (out of season). Under higherlight and temperature conditions (normal growing season) thedecline was independent of the flowering date. Furthermore,the timing of the decline was not altered when plants were maintainedunder long-day (vegetative) conditions nor when flowers wereremoved. It is suggested that under more favourable growth conditionsthe diversion of assimilates by the fruits is not the primarycause of the decline in nodule activity, but competition bythe fruits may be important when the production of photo-assimilatesis more limited. Key words: Glycine max, nitrogenase, source-sink  相似文献   

17.
When grown in a nutrient solution containing combined nitrogen(NH4NO3), Lotus pedunculatus and L. tenuis seedlings inoculatedwith a fast-growing strain of Rhizoblum (NZP2037) did neitherdevelop root nodules nor develop flavolans in their roots. Incontrast, the roots of nodulated seedlings growing in a nitrogen-freenutrient solution contained flavolans. Flavolan synthesis coincidedwith root nodule development on these plants. When added as a single dose, high concentrations of NH4NO3 (5and 10 mg N per plant) stimulated the growth of L. pedunculatusplants but suppressed nodulation and nitrogen fixation. In contrastthe continued supply of a low concentration of NH4NO3 (1?0 mgN d–1 per plant) stimulated nitrogen fixation by up to500%. This large increase in nitrogen fixation was associatedwith a large increase in nodule fresh weight per plant, a doublingof nodule nitrogenase activity, and a lowering of the flavolancontent of the plant roots. The close relationship between nitrogendeficiency, nodule development, and flavolan synthesis in L.pedunculatus meant that it was not possible (by nitrogen pretreatmentof plants) to alter the ineffective nodule response of a Rhizobiumstrain (NZP2213) sensitive to the flavolan present in the rootsof this plant.  相似文献   

18.
Genistein, as a plant-to-bacteria signal, plays an importantrole in the establishment of the soybean (Glycine max [L.] Merr.)-Bradyrhizobiumjaponicum nitrogen-fixing symbiosis. It is essential to thedevelopment of effective root nodules and responsible for inducingthe nod genes of B. japonicum. Because sub-optimal root zonetemperature (RZT) delays infection and early nodule development,and decreases plant nodule number, and genistein addition overcomessome of this, it is reasonable to hypothesize that suboptimalRZT disrupts the inter-organismal signal exchange by inhibitinggenistein synthesis. Four experiments were conducted to testthese hypotheses. The results of these studies indicated that:(1) when soybean plants were germinated and maintained at RZTsranging from 13 to 17C, root genistein concentration and contentper plant were lower than those of plants with roots maintainedat RZTs above 17C; (2) when plants were germinated at an optimalRZT (25 C) then transferred to RZTs below 17C, and acclimatedfor a few days, root genistein concentration and content perplant were higher than those of plants with roots maintainedeither at optimal RZT, or transferred to RZT above 17 C, althoughby the end of the experiment, the genistein concentration ofroot systems at below 17C RZT appeared to be declining to valuesbelow those of plants with above 17 C RZT; (3) the root genisteinconcentration increased before the onset of nitrogen fixationand decreased thereafter; and (4) part of the effect of RZTson genistein content per plant root system was from reductionsin genistein concentration at lower RZT5, and part was due todecreased plant root growth. Key words: Genistein, Glycine max, suboptimal temperature  相似文献   

19.
Shoot--root Plasticity and Episodic Growth in Red Pine Seedlings   总被引:1,自引:0,他引:1  
DREW  A. P. 《Annals of botany》1982,49(3):347-357
Red pine seedlings of a half-sib seed source were grown in growthchambers under thermoperiodic regimes of 30/20 °C, 25/15°C and 20/10 °C day/night temperatures. Classical growthanalyses based on weekly harvests of leaves, stem and rootswere employed to study the first 3 to 15 weeks of seedling development.Leaf and root growth were inversely related and episodic. Significantshort term surges in growth of either organ were effective inreversing periodic imbalances that occurred, thus maintaininga long term dry weight equilibrium between above and below groundseedling parts. Adaptive plasticity in the leaf-root balanceat different temperatures gave plants grown at 25/15 °Ca larger proportion of leaves relative to roots and a greatersize compared to seedlings grown under other regimes. Episodicfluctuations in leaf and root growth occurred simultaneouslywith depressions in net assimilation rate. Apparently, balancedgrowth is maintained at an assimilatory cost to the plant, periodic‘corrections’ of shoot—root imbalances requiringcarbohydrate conversion and energy expenditure. Pinus resinosa Ait., red pine, episodic growth, shoot—root balance, plasticity, net assimilation rate, growth analysis  相似文献   

20.
Root temperature greatly affected plant growth whether or notplants depended on symbiotic nitrogen fixation. The two plantselections responded differently to the three strains of Rhizobiumand this response was differentially affected by root temperature. Plant yield was significantly decreased by each fall of 4 °Cin temperature from 19 to 7 °C by amounts that dependedboth on the host and Rhizobium strain. Symbiosis with strainTA1, originally isolated from a cold environment, was most tolerantof a root temperature of 11 °C; TA1 produced as much ormore plant material of the abundantly nodulating host in 40days growth at 7 and 11 °C as did the uninoculated plantsgiven KNO3. Root temperature affected the number, rate of formation, anddistribution of nodules on the root system. At 7 °C fewernodules formed than between 11 and 19 °C. At 7 °C nodulesdid not form on secondary roots by 40 days but at 11 °Cthe secondary roots nodulated rapidly between 30 and 40 days.Nodule formation at 19 °C was almost completed at 20 days,when secondary root nodules accounted for 60 per cent of thetotal. Within the range 15 to 19 °C, at which the originalselections for sparse and abundant nodulation were made, plantsnodulated true to selection, but not at 11 °C. At 7 and11 °C plants nodulated with TA1 yielded more with increasingnumber of nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号