首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assessed the impact of salt restriction on cardiac morphology and biochemistry and its effects on hemodynamic and renal variables in experimental hyperthyroidism. Four groups of male Wistar rats were used: control, hyperthyroid, and the same groups under low salt intake. Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 4 weeks. Morphologic, metabolic, plasma, cardiac, and renal variables were also measured. Low salt intake decreased BP in T4-treated rats but not in controls. Low salt intake reduced relative left ventricular mass but increased absolute right ventricular weight and right ventricular weight/BW ratio in both control and hyperthyroid groups. Low salt intake increased Na+/H+ exchanger-1 (NHE-1) protein abundance in both ventricles in normal rats but not in hyperthyroid rats, independently of its effect on ventricular mass. Mammalian target of rapamycin (mTOR) protein abundance was not related to left or right ventricular mass in hyperthyroid or controls rats under normal or low salt conditions. Proteinuria was increased in hyperthyroid rats and attenuated by low salt intake. In this study, low salt intake produced an increase in right ventricular mass in normal and hyperthyroid rats. Changes in the left or right ventricular mass of control and hyperthyroid rats under low salt intake were not explained by the NHE-1 or mTOR protein abundance values observed. In hyperthyroid rats, low salt intake also slightly reduced BP and decreased HR, proteinuria, and water and sodium balances.  相似文献   

2.
In order to further investigate the mechanism regulating the control of mitochondrial respiration by thyroid hormones, the effect of the hyperthyroidism on the kinetic characteristics of cytocrome c oxidase in rat heart mitochondria was studied. Mitochondrial preparations from both control and hyperthyroid rats had equivalent Km values for cytochrome c, while the maximal activity of cytochrome oxidase was significantly increased (by around 30%) in mitochondrial rats. This enhanced activity of cytochrome oxidase was associated to a parallel increases in mitochondrial State 3 respiration. The hormone treatment resulted in a decrease in the flux control coefficient of the oxidase. The enhanced activity of cytochrome oxidase in hyperthyroid rats does not appear to be dependent on an increases in the mass of this enzyme complex in that the heme aa3 content was equivalent in both hyperthyroid and control preparations. The Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria from hyperthyroid rats as compared with control rats in the breakpoint of the biphasic plot is shifted to a lower temperature. Cardiolipin content was significantly increased in mitochondrial preparations from hyperthyroid rats, while there were no significant alterations in the fatty acid composition of cardiolipin of control and hyperthyroid preparations. The results support the conclusion that the enhanced cytochrome oxidase activity in heart mitochondrial preparations from hyperthyroid rats is due to a specific increase in the content of cardiolipin.  相似文献   

3.
This study analyzed the contribution of neuronal nitric oxide synthase (nNOS) to the hemodynamic manifestations of hyperthyroidism. The effects on hyperthyroid rats of the chronic administration of 7-nitroindazole (7-NI), an inhibitor of nNOS, were studied. Six groups of male Wistar rats were used: control, 7-NI (30 mg.kg-1.day-1 by gavage), T(4)50, T(4)75 (50 or 75 microg thyroxine.rat-1.day-1, respectively), T(4)50+7-NI, and T(4)75+7-NI. All treatments were maintained for 4 wk. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, SBP, pulse pressure (PP), and HR were measured in conscious rats, and morphological, metabolic, plasma, and renal variables were determined. Expression of nNOS in the hypothalamus of T(4)75 and control rats was analyzed by Western blot analysis. The response of mean arterial pressure (MAP) to pentolinium (10 mg/kg iv) was used to evaluate the sympathetic contribution to BP in T(4)75 and T(4)75+7-NI rats. T(4) produced an increased hypothalamic nNOS expression and dose-related increases in blood pressure (BP), HR, and PP vs. control rats. 7-NI did not modify BP or any other hemodynamic variable in normal rats. However, 7-NI produced a marked reduction in BP, HR, PP, and food and water intake in both hyperthyroid groups and improved creatinine clearance in the T(4)75 group. Pentolinium produced a greater MAP decrease in the T(4)75+7-NI than in the T(4)75 group. In conclusion, administration of 7-NI attenuates the hemodynamic and metabolic manifestations of hyperthyroidism, suggesting that nNOS contributes to the hyperdynamic circulation of this endocrine disease by modulating sympathetic activity.  相似文献   

4.
B G Kasson  R George 《Life sciences》1983,33(19):1845-1852
Previous experiments in our laboratory demonstrated that morphine, at doses which produced pronounced hypothermia in normal rats, not only failed to decrease but instead increased body temperature in thyroxine-treated animals. The present studies were undertaken to further investigate these initial findings. In animals treated chronically with subcutaneous thyroxine, basal body temperatures were elevated and morphine induced only hyperthermia whether given subcutaneously (10 mg/kg) or centrally (30 micrograms) into the anterior hypothalamus. Basal oxygen consumption, which reflects metabolic heat production, was significantly elevated when compared to controls. In response to morphine, control animals showed decreased oxygen consumption while thyroxine-treated animals showed a slight increase. In both groups of animals, changes in core temperatures reflected changes in oxygen consumption. These results indicate that hyperthyroid animals fail to decrease body temperature in response to morphine because they are unable to decrease metabolic heat production. Morphine, acting at central hypothalamic sites, reduces heat production in normal animals, but in thyroxine-treated animals morphine cannot overcome the increased thermogenesis.  相似文献   

5.
Although protein turnover in skeletal muscle is increased in hyperthyroidism and decreased in hypothyroidism, a deficient protein intake tends to increase serum T3 (tri-iodothyronine) while decreasing muscle protein turnover. To determine whether this diet-induced decrease in protein turnover can occur independent of thyroid status, we have examined muscle protein turnover and nitrogen conservation in hyperthyroid rats fed on a protein-free diet. After inducing hyperthyroidism by giving 20 micrograms of T3/100g body wt. daily for 7 days, groups of euthyroid and hyperthyroid animals were divided into subgroups fed on basal and protein-free diets. Muscle protein turnover was measured by N tau-methylhistidine excretion and [14C]tyrosine infusion. Urinary nitrogen output of euthyroid and hyperthyroid animals fed on the protein-free diet was also measured. Although hyperthyroidism increased the baseline rates of muscle protein synthesis and degradation, it did not prevent a decrease in these values in response to protein depletion. Furthermore, hyperthyroid rats showed greatly decreased nitrogen excretion in response to the protein-free diet, although not to values for euthyroid rats. These findings suggest that protein depletion made the experimental animals less responsive to the protein-catabolic effects of T3.  相似文献   

6.
Newborn Wistar rats were made hyperthyroid by injection of tri-iodothyronine and assayed for survival, brain oxygen uptake, brain chemiluminescence and activity of antioxidant enzymes. Brain chemiluminescence was measured (1) by removing the parietal bones or (2) through the translucid parietal bones. Control animals showed a brain chemiluminescence of 130 +/- 12 c.p.s./cm2 and 99 +/- 10 c.p.s./cm2 for procedures (1) and (2) respectively. Hyperthyroid rats showed increases in the spontaneous brain photoemission of 46 and 70% compared with controls, measured by procedures 1 and 2 respectively. The hyperthyroid state did not modify the oxygen-dependent chemiluminescence of brain homogenates. The hyperthyroid animals showed a 30% increase in the oxygen uptake of brain slices and a dramatic shortening of life-span to about 16 weeks. Superoxide dismutase (the Cu-Zn enzyme), catalase and Se-dependent glutathione peroxidase activities of brain homogenates were increased by 18, 36 and 30% respectively in the hyperthyroid animals. Isolated brain mitochondria produced 0.18-0.20 nmol of H2O2/min per mg of protein in state 4 in the presence of succinate as substrate. No difference was observed between control and hyperthyroid animals. It is concluded that hyperthyroidism leads to hypermetabolism and oxidative stress in the brain. The increased levels of oxygen and peroxyl radicals may contribute to premature ageing in these animals.  相似文献   

7.
The effect of hyperthyroidism on the activity of the mitochondrial tricarboxylate carrier has been studied. The activity of this transporting system in liver mitochondria was quantitatively determined by the rate of malate-[14C]citrate exchange using the 1,2,3-benzene-tricarboxylate inhibitor stop technique. It has been found that the rate of citrate uptake is significantly enhanced in liver mitochondria from hyperthyroid rats as compared to that obtained in mitochondria from control rats. Kinetic analysis of the malate-citrate exchange reaction indicates that only the Vmax of this transporting process is enhanced, while there is practically no change in the Km values. Inhibitor titrations with the inhibitor palmitoyl-CoA show that mitochondria from hyperthyroid rats require the same concentrations of inhibitor to produce 100% inhibition of citrate uptake as control mitochondria, suggesting that the amount of functional translocase enzyme present is unaffected. The Arrhenius plot characteristics differ for tricarboxylate carrier activity in mitochondria from hyperthyroid rats as compared with control rats in that the break point of the biphasic plot decreases from 18.1 +/- 1.4 degrees C in controls to 12.9 +/- 1.2 degrees C in hyperthyroid animals. The hepatic mitochondrial lipid composition is altered significantly in hyperthyroid rats; the total cholesterol decreases and the phospholipids increase. The liver mitochondrial phospholipid composition is altered significantly in hyperthyroid rats. In particular negatively charged phospholipid cardiolipin increases by more than 50%. Minor alterations were found in the pattern of fatty acids. The thyroid hormone induced change in the activity of the tricarboxylate carrier can be ascribed either to a general modification of membrane lipid composition which increases the membrane fluidity and in turn the mobility of the carrier or to a more localized change of lipid domain (cardiolipin content) surrounding the carrier molecule in the mitochondrial membrane.  相似文献   

8.
Hyperthyroidism was induced by subcutaneous injections of L-thyroxine (T4) (0.5 mg/kg/day) for 3 days in order to investigate the effects of acute hyperthyroidism on the vasorelaxing responses to isoprenaline and acetylcholine in isolated rat aortae. In the aortae, there was no significant difference in isoprenaline-induced relaxation between hyperthyroid and control rats, however acetylcholine-induced relaxation was significantly greater in hyperthyroid rats than in control rats. N(G)-nitro-L-arginine (L-NOARG), an inhibitor of nitric oxide (NO) synthase, reduced isoprenaline- and acetylcholine-induced relaxations in both hyperthyroid and control rats and in the presence of L-NOARG no significant difference in the acetylcholine-induced relaxation was seen between the two groups of rats. Indomethacin, a cyclo-oxygenase inhibitor, had no significant influence on both isoprenaline- and acetylcholine-induced relaxations in both control and hyperthyroid rats. 17-Octadecynoic acid (17-ODYA), a cytochrome P-450 mono-oxygenase inhibitor, reduced the both isoprenaline- and acetylcholine-induced relaxation in both hyperthyroid and control rats, and acetylcholine-induced relaxation was still greater in hyperthyroid rats than in control rats. These results indicate that an acute hyperthyroidism significantly enhances muscarinic receptor- but not adrenoceptor-mediated relaxations of the aortae and L-NOARG abolished an enhancement by acute hyperthyroidism of muscarinic receptor-mediated relaxation, suggesting that the effects may be due to an alteration in muscarinic receptor-mediated NO systems of the aortae at early stage of hyperthyroidism.  相似文献   

9.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

10.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

11.
Objective: Obese Zucker rats, animal model for the metabolic syndrome, develop a diabetes‐like neuropathy that is independent of hyperglycemia. The purpose of this study was to determine whether drugs used to treat cardiovascular dysfunction in metabolic syndrome also protect nerve function. Methods and Procedures: Obese Zucker rats at 20 weeks of age were treated for 12 weeks with enalapril or rosuvastatin. Lean rats were used as controls. Vasodilation in epineurial arterioles was measured by videomicroscopy. Endoneurial blood flow (EBF) was measured by hydrogen clearance and nerve conduction velocity was measured following electrical stimulation of motor or sensory nerves. Results: Enalapril treatment decreased serum angiotensin‐converting enzyme (ACE) activity and both drugs reduced serum cholesterol levels. In obese Zucker rats at 32 weeks of age superoxide levels were elevated in the aortas and epineurial arterioles, which were reduced by treatment with either drug. Nitrotyrosine levels were increased in epineurial arterioles and reduced with enalapril treatment. EBF was decreased and corrected by treatment with either drug. Motor nerve conduction velocity was decreased and significantly improved with enalapril treatment. Obese Zucker rats were hypoalgesic in response to a thermal stimulus and this was significantly improved with either treatment. Treatment with either enalapril or rosuvastatin significantly reversed the decrease in acetylcholine‐mediated vascular relaxation of epineurial arterioles in obese Zucker rats. Discussion: Even though obese Zucker rats have normal glycemia vascular and neural dysfunctions develop with age and can be improved by treatment with either enalapril or rosuvastatin.  相似文献   

12.
In present study interactions of some adrenergic drugs with the binding of 3H-norepinephrine (NE) and response of some enzymatic systems in the heart of rats with pharmacological hyperthyroidism have been investigated. Binding of NE to cardiac particles was inhibited by isoproterenol, propranolol and in lower concentrations by another beta-blocking drug trimepranol both in control and hyperthyroid hearts in the same degree. However, after addition of nonradioactive norepinephrine (10(-3) M) the degree of displacement was lower in hyperthyroid than in euthyroid group. Activity of adenylate cyclase was lower in hyperthyroid cardiac particles. This difference remained preserved after stimulation by norepinephrine or NaF. The activities of hormone-sensitive lipase and lipoprotein lipase were increased in preparation of hyperthyroid hearts. The phosphorylase "a" activity was also increased in hyperthyroid cardiac particles. There was no change in cardiac adrenergic binding sites properties in hyperthyroidism with the exception of less displacement of NE by nonlabelled hormone. The results indicate that the increased lipolytic and phosphorylase "a" activities in hyperthyroid hearts are not necessarily linked to elevated activity of adenylate cyclase.  相似文献   

13.
Kidney weight was significantly decreased in hypothyroidism (induced by Na131I administration) and increased in hyperthyroidism (induced by thyroxine treatment) as compared to control in female Wistar rats. The tissue lipid peroxidation level remained unchanged in hyperthyroid rats but significantly increased in hypothyroid rats. Superoxide dismutase was decreased in both experimental groups but more so in hyperthyroid rats. Catalase was reduced significantly in hyperthyroid rats but remained unaffected in hypothyroid rats. Tissue glutathione peroxidase (GPx) activity was increased while reduced glutathione levels remained unaltered in both hypothyroid and hyperthyroid rats. Plasma GPx activity was significantly low in both the hypothyroid and hyperthyroid rats. The results suggest alterations in the oxidative stress in hypothyroid and hyperthyroid rat kidneys with concomitant changes of free radical scavengers.  相似文献   

14.
This study evaluated the activity of cardiac and renal antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)] and whether chronic treatment with tempol, a cell membrane-permeable SOD mimetic, ameliorates the hypertension of hyperthyroidism. Two experiments were performed. In experiment I, the following four groups of male Wistar rats were used: control group and three groups that received thyroxine (T4) at 10, 50, or 75 microg x rat(-1) x day(-1). In experiment II, tempol was orally administered (18 mg x kg(-1) x day(-1)) to control and T4-treated (75 microg x rat(-1) x day(-1)) rats. All treatments were maintained for 6 wk. Body weight, tail systolic blood pressure (BP), and heart rate were measured one time a week, and direct BP and morphological, metabolic, plasma, and renal variables were measured at the end of the experiment. Enzymatic activities were measured in renal cortex and medulla and right and left ventricles. In renal cortex, SOD activity was decreased in the T4-75 group, and there was a dose-related increase in CAT activity and decrease in GPX and GR activities in T4-treated groups. Activity of all antioxidant enzymes was reduced in left ventricle in T4-50 and T4-75 groups and in right ventricle in the T4-75 group. Tempol reduced BP, plasma malondialdehyde, and total urinary excretion of F2 isoprostanes in hypertensive hyperthyroid rats but not in controls. Tempol did not improve cardiac hypertrophy, proteinuria, or creatinine clearance in hyperthyroid rats. In conclusion, the results obtained indicate that the activity of SOD, GPX, and GR in renal and cardiac tissues is decreased in hyperthyroidism and that antioxidant treatment with tempol ameliorates T4-induced hypertension.  相似文献   

15.
To gain insight into the mechanism of the altered carbohydrate metabolism in thyrotoxicosis, intravenous glucose tolerance tests (IVGTT) and pancreatic suppression tests (PST) were performed in hyperthyroid rats (0.1 mg/kg T4 X 5 days) to assess insulin secretion and action in vivo. Thyroid hormone injections significantly increased T4 levels (182.8 nM +/- 11.6 (SEM) versus 50.2 +/- 6.4; P less than 0.001) and baseline glucose concentrations (9.3 mM +/- 0.2 versus 7.1 +/- 0.2; P less than 0.001). Body weights, basal insulin concentrations, glucose concentrations during IVGTT, glucose disappearance rates and steady state plasma glucose levels (SSPG) were normal. Insulin concentrations during the glucose tolerance test and during the PST were significantly decreased. The metabolic clearance rate of insulin (ml/min/kg +/- SEM) was significantly (P less than 0.01) increased (54.4 +/- 3.5 versus 41.6 +/- 2.3) in the hyperthyroid rats. If the different baseline glucose values were subtracted from the glucose concentrations achieved during the 2 tests, both the glucose disappearance rate and the fall in SSPG levels were significantly enhanced in the T4-injected animals. Thus, in the hyperthyroid rat, insulin secretion is decreased, the clearance of insulin is increased and insulin sensitivity is either normal or possibly enhanced.  相似文献   

16.
Pretreatment of rats for 3 days with triiodothyronine produced an increase in rate in the right atrium and a decrease in force of contraction in the right ventricle and Langendorff heart. Isoproterenol administration produced a time-dependent increase in rate and tension. The increase in rate was consistently greater in atria from hyperthyroid rats, and the increase in tension consistently greater in tissues from euthyroid rats. Isoproterenol also produced a time- and dose-dependent increase in phosphorylase a activity. In the isolated atria and ventricles enzyme activity was similar in the two groups. In the Langendorff hearts, however, there was an enhancement of the isoproterenol-induced increase in phosphorylase activity in hearts from hyperthyroid rats. Reduction of the coronary blood flow to the level found in euthyroid animals did not reduce the potentiation of phosphorylase activation found in hearts from hyperthyroid rats. It is concluded that the potentiation of phosphorylase activation in hearts from hyperthyroid rats is not due to the increase in coronary blood flow.  相似文献   

17.
(Na+ + K+)-dependent ATPase activity, heat production and oxygen consumption were increased by 59%, 62% and 75% respectively in hepatocytes from tri-iodothyronine-treated rats. Ouabain at concentrations of 1 and 10 mM decreased oxygen uptake by 2--8% in hepatocytes from euthyroid rats and by 5--15% in hepatocytes from hyperthyroid animals. Heat output was decreased by 4--9% with the glycoside in isolated liver parenchymal cells from the control animals and by 11% in the cells from the tri-iodothyronine-treated animals. These results do not support the hypothesis that hepatic (Na+ + K+)-ATPase plays a major role in increased heat production in hepatocytes from hyperthyroid rats.  相似文献   

18.
Studies of renal and other tissues suggest that chronic elevation or reduction of dietary potassium intake could affect vascular smooth muscle sodium pump (Na-pump) activity. To examine this possibility, the effects of 3 weeks of low (LK: 4 mmole KCl/kg chow), normal (NK; 162 mmole/kg), and high (HK; 1350 mmole/kg) dietary potassium intake on Na-pump activity, the Na-pump activity response to changes in extracellular potassium concentration, and Na-pump site density were determined in tail arteries of rats. Plasma potassium concentration was elevated by 21% in HK rats and reduced by 45% in LK rats. When incubated in autologous plasma, compared to arteries from NK rats, Na-pump activity was decreased in the tail arteries from LK rats but not altered in those from HK rats. When arteries from NK and LK rats were incubated in autologous plasma with the potassium concentration increased to equal that of the HK rats, Na-pump activity exceeded that of HK rat arteries: Na-pump activity of arteries incubated in autologous plasma did not differ from that of arteries incubated in Krebs-Henseleit buffer with the potassium concentration adjusted to equal that of the plasma. Tail artery Na-pump activity for all three dietary potassium groups increased as potassium concentration of the incubation medium was increased from 1 to 12 mM; Na-pump activity was similar for the NK and LK rats at all potassium concentrations, but Na-pump activity of HK rat arteries was less than that of NK arteries at high extracellular potassium concentrations. Na-pump site density was not altered by either HK or LK diet. It is concluded that in tail arteries of rats fed the LK diet, chronically decreased extracellular potassium results in chronically decreased Na-pump activity. In contrast, an adaptive change occurs in tail arteries of rats fed HK diet, such that Na-pump activity remains at normal levels despite elevated extracellular potassium; this adaptive response to chronically increased dietary potassium does not appear to be the result of decreased Na-pump site density.  相似文献   

19.
In rat kidney several mitochondrial and soluble enzyme activities are stimulated by thyroid hormones and the mitochondrial membrane fluidity is also increased. However, the ketone metabolism enzyme activities of D-3-hydroxybutyrate dehydrogenase and of 3-oxoacid CoA-transferase are not significantly affected by the hyperthyroid state and the ketone body concentration is not greatly changed. Therefore, in hyperthyroid rats the response of the kidney, as far as the ketone bodies and their metabolizing enzymes are concerned, is at variance with that of the liver and the heart. In the brain of young rats, age 8-9 weeks, the activities of the enzymes of ketone body metabolism and those responsible for other metabolic pathways are not influenced by the hyperthyroid state. In these animals, however, the activities of two enzymes, NAD-isocitrate dehydrogenase and pyruvate kinase, are still stimulated by 28 and 41%, respectively. This can be probably related to the higher energy requirement for definitive brain maturation in young hyperthyroid rats.  相似文献   

20.
Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to disturbed tissue blood flow and development of increased peripheral resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号