首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differentiation and growth of swine subcutaneous adipose tissue was assessed by chemical analysis of tissue components, cell size measurements of isolated adipocytes, and light and electron microscopic observations. At birth all adipocytes were multilocular (contained multiple small lipid droplets), but by day 3 postpartum, many were already differentiated to the unilocular state (one major, central lipid droplet). Microscopic observations of fixed tissue, cell size determinations on isolated adipocytes, and chemical analysis of tissue composition indicated a marked increase in adipocyte size accompanied by an increase in the size of the central lipid droplet with age. Small cells were observed at all ages (in both fixed tissue and isolated cell preparations), yielding biphasic size distributions. Although the adipocyte stem cell was not discerned, an early stage in differentiation, designated an adipoblast, was observed.  相似文献   

2.
Adipose tissue cellularity and metabolism are traditionally expressed in terms of mean cell size and number. The need for a simple method allowing rapid determination of cell size and number of freshly isolated, unfixed adipocyte preparations led us to compare estimates of cell size determined by the established method of optical sizing to a proposed method of electronic cell sizing and counting. In collagenase-isolated, unfixed adipocytes whose mean diameters ranged from approximately 40 to 65 microns (obtained from healthy rats weighing 100-360 g) the electronic method provided estimates of the mean cell diameter and size distribution that did not differ from the optical sizing technique. Estimates of mean cell diameter and cell number by the electronic method were rapid and reproducible (coefficients of variation 0.5 and 3.8%, respectively) and a less than 20 sec delay until sample analysis, after mixing of the adipocyte suspension, did not alter these estimates. Electronic determination of cell size and number, using freshly isolated, unfixed rat adipocyte populations (mean cell diameter less than or equal to 60 microns), is rapid and reliable. It will be particularly useful for studies of hormone binding and transport processes where it may be necessary to tightly control cell density.  相似文献   

3.
Obesity is characterized by uncontrolled expansion of adipose tissue mass, resulting in adipocyte hypertrophy (increased adipocyte size) and hyperplasia (increased number of adipocytes). The number of adipose cells is directly related to adipocyte differentiation process from stromal vascular cells to mature adipocytes. It is known that epigenetic factors influence adipose differentiation program. However, how specific epigenome modifiers affect white adipocyte differentiation and metabolic phenotype is still matter of research. Here, we provide evidence that class I histone deacetylases (HDACs) are involved both in the differentiation of adipocytes and in determining the metabolic features of these cells. We demonstrate that inhibition of class I HDACs from the very first stage of differentiation amplifies the differentiation process and imprints cells toward a highly oxidative phenotype. These effects are related to the capacity of the inhibitor to modulate H3K27 acetylation on enhancer regions regulating Pparg and Ucp1 genes. These epigenomic modifications result in improved white adipocyte functionality and metabolism and induce browning. Collectively, our results show that modulation of class I HDAC activity regulates the metabolic phenotype of white adipocytes via epigenetic imprinting on a key histone mark.  相似文献   

4.
Both adipocyte hyperplasia and hypertrophy are determinant factors for adipocyte differentiation during the development of obesity. p21(WAF1/CIP1), a cyclin-dependent kinase inhibitor, is induced during adipocyte differentiation; however, its precise contribution to this process is unknown. Using both in vitro and in vivo systems, we show that p21 is crucial for maintaining adipocyte hypertrophy and obesity-induced insulin resistance. The absence of p21 in 3T3-L1 fibroblasts by RNA-mediated interference knockdown or in embryonic fibroblasts from p21(-/-) mice impaired adipocyte differentiation, resulting in smaller adipocytes. Despite normal adipose tissue mass on a normal diet, p21(-/-) mice fed high energy diets had reduced adipose tissue mass and adipocyte size accompanied by a marked improvement in insulin sensitivity. Knockdown of p21 in enlarged epididymal fat of diet-induced obese mice and also in fully differentiated 3T3-L1 adipocytes caused vigorous apoptosis by activating p53. Thus, p21 is involved in both adipocyte differentiation and in protecting hypertrophied adipocytes against apoptosis. Via both of these mechanisms, p21 promotes adipose tissue expansion during high fat diet feeding, leading to increased downstream pathophysiological consequences such as insulin resistance.  相似文献   

5.
Increased triglyceride accumulation in adipocytes caused by a misbalance between energy intake and energy consumption, results in increased adipocyte size, excess adipose tissue, increased body weight and ultimately, obesity. It is well established that enlarged adipocytes exhibit malfunctions that contribute to whole body insulin resistance, a key factor for the development of type 2 diabetes. However, the underlying molecular cause for dysfunctional adipocyte behavior and signaling is poorly understood. Since the adipocyte cell surface proteome, or surfaceome, represents the cellular signaling gateway to the microenvironment, we studied the contribution of this subproteome to adipocyte malfunctions in obesity. By using the chemoproteomic Cell Surface Capture (CSC) technology, we established surfaceome maps of primary adipocytes derived from different mouse models for metabolic disorders. Relative quantitative comparison between these surfaceome maps revealed a set of cell surface glycoproteins with modulated location-specific abundance levels. RNAi mediated targeting of a subset of the detected obesity modulated cell surface glycoproteins in an in vitro model system provided functional evidence for their role in adiponectin secretion and the lipolytic activity of adipocytes. Thus, we conclude that the identified cell surface glycoproteins which exhibit obesity induced abundance changes and impact adipocyte function at the same time contribute to adipocyte malfunction in obesity. The regulation of their concerted activities could improve adipocyte function in obesity.  相似文献   

6.

Background

The primary function of TSH is to activate TSH receptors (TSHr) in the thyroid gland and thereby stimulate thyroid hormone synthesis and secretion. TSHr are also expressed in other organs, but their physiological importance is still unclear. We have previously shown that TSHr, expressed in adipocytes, are of potential importance for lipolysis and extrauterine adaptation of the neonate.

Methodology

To further study the role of TSHr in adipocytes we selectively removed the TSHr gene in mice adipocytes by using the Cre-loxP recombination system (B6.Cg-Tg (Fabp4-Cre) 1Rev/J. TSHr knockout (KO) newborn mice were phenotypically characterized. Isolated adipocytes from 8-week-old male mice were studied in term of adipocyte size and metabolism.

Results

Mice lacking TSHr in adipocytes were apparently normal at birth and no differences in thyroid gland function or histology were observed. Sensitivity to TSH-induced lipolysis was ten times lower in adipocytes from targeted animals compared to wild-type. This indicates that adipocytes from targeted animals are refractory to stimulation of physiological concentrations of TSH. Catecholamine-induced lipolysis and insulin-induced inhibition of lipolysis were unaltered. Adipocyte size was increased in the targeted animals. Basal lipolysis was increased as an effect of the increased adipocyte size.

Conclusion

Our results indicate that adipocyte TSHr under normal conditions affects adipocyte growth and development.  相似文献   

7.
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

8.
Adipocyte size plays a key role in the development of insulin resistance. We examined longitudinal changes in adipocyte size and distribution in visceral (VIS) and subcutaneous (SQ) fat during obesity‐induced insulin resistance and after treatment with CB‐1 receptor antagonist, rimonabant (RIM) in canines. We also examined whether adipocyte size and/or distribution is predictive of insulin resistance. Adipocyte morphology was assessed by direct microscopy and analysis of digital images in previously studied animals 6 weeks after high‐fat diet (HFD) and 16 weeks of HFD + placebo (PL; n = 8) or HFD + RIM (1.25 mg/kg/day; n = 11). At 6 weeks, mean adipocyte diameter increased in both depots with a bimodal pattern only in VIS. Sixteen weeks of HFD+PL resulted in four normally distributed cell populations in VIS and a bimodal pattern in SQ. Multilevel mixed‐effects linear regression with random‐effects model of repeated measures showed that size combined with share of adipocytes >75 µm in VIS only was related to hepatic insulin resistance. VIS adipocytes >75 µm were predictive of whole body and hepatic insulin resistance. In contrast, there was no predictive power of SQ adipocytes >75 µm regarding insulin resistance. RIM prevented the formation of large cells, normalizing to pre‐fat status in both depots. The appearance of hypertrophic adipocytes in VIS is a critical predictor of insulin resistance, supporting the deleterious effects of increased VIS adiposity in the pathogenesis of insulin resistance.  相似文献   

9.
Enlarged fat cells exhibit modified metabolic capacities, which could be involved in the metabolic complications of obesity at the whole body level. We show here that sterol regulatory element-binding protein 2 (SREBP-2) and its target genes are induced in the adipose tissue of several models of rodent obesity, suggesting cholesterol imbalance in enlarged adipocytes. Within a particular fat pad, larger adipocytes have reduced membrane cholesterol concentrations compared with smaller fat cells, demonstrating that altered cholesterol distribution is characteristic of adipocyte hypertrophy per se. We show that treatment with methyl-beta-cyclodextrin, which mimics the membrane cholesterol reduction of hypertrophied adipocytes, induces insulin resistance. We also produced cholesterol depletion by mevastatin treatment, which activates SREBP-2 and its target genes. The analysis of 40 adipocyte genes showed that the response to cholesterol depletion implicated genes involved in cholesterol traffic (caveolin 2, scavenger receptor BI, and ATP binding cassette 1 genes) but also adipocyte-derived secretion products (tumor necrosis factor alpha, angiotensinogen, and interleukin-6) and proteins involved in energy metabolism (fatty acid synthase, GLUT 4, and UCP3). These data demonstrate that altering cholesterol balance profoundly modifies adipocyte metabolism in a way resembling that seen in hypertrophied fat cells from obese rodents or humans. This is the first evidence that intracellular cholesterol might serve as a link between fat cell size and adipocyte metabolic activity.  相似文献   

10.
Obesity is a condition characterized by excess adipose tissue that results from positive energy balance and is the most common metabolic disorder in the industrialized world. The obesity epidemic shows no sign of slowing, and it is increasingly a global problem. Serious clinical problems associated with obesity include an increased risk for type 2 diabetes, atherosclerosis, and cancer. Hence, understanding the origin and development of adipocytes and adipose tissue will be critical to the analysis and treatment of metabolic diseases. Historically, albeit incorrectly, adipocytes were thought to be inert cells whose singular function was lipid storage. It is now known that adipocytes have other critical functions; the most important include sensitivity to insulin and the ability to produce and secrete adipocyte-specific endocrine hormones that regulate energy homeostasis in other tissues. Today, adipocytes are recognized as critical regulators of whole-body metabolism and known to be involved in the pathogenesis of a variety of metabolic diseases. All cells come from other cells and many cells arise from precursor cells. Adipocytes are not created from other adipocytes, but they arise from precursor cells. In the last two decades, scientists have discovered the function of many proteins that influence the ability of precursor cells to become adipocytes. If the expansion of the adipose tissue is the problem, it seems logical that adipocyte development inhibitors could be a viable anti-obesity therapeutic. However, factors that block adipocyte development and limit adipocyte expansion also impair metabolic health. This notion may be counterintuitive, but several lines of evidence support the idea that blocking adipocyte development is unhealthy. For this reason it is clear that we need a better understanding of adipocyte development.  相似文献   

11.
Adiponectin is an adipocytokine with profound anti-diabetic and anti-atherogenic effects. Even though adiponectin expression is restricted to adipocytes, serum levels are paradoxically decreased in obesity. We characterized how adiponectin expression and regulation relates to adipocyte differentiation in a human adipocyte cell culture model. Adiponectin was not expressed by human preadipocytes. Differentiation into adipocytes was necessary to induce an increasing expression of adiponectin (359 +/- 64-fold, P < 0.001) in parallel to an increasing expression of adipocyte differentiation markers. Adiponectin protein synthesis and secretion occurred specifically in mature adipocytes and may thus serve as a distinctive marker of adipocyte differentiation. Addition of serum during the course of differentiation as well as acutely to mature adipocytes significantly and concentration-dependently suppressed adiponectin to almost non-detectable levels (to 9.8 +/- 0.03%, P = 0.0043), suggesting a strong humoral serum component of adiponectin down-regulation. This serum component is present in both obese and lean individuals with a tendency to a stronger effect in obese men and women. Separation by molecular size suggests that higher molecular weight (>30 kDa) fractions exert inhibition of adiponectin. Withdrawal of adipogenic ingredients from the culture medium also resulted in a decrease of adiponectin expression and secretion to 62.01 +/- 0.09% and 70.86 +/- 0.05%, respectively. We identified insulin as a critical component to maintain adiponectin expression with a down-regulation to 61.6 +/- 0.1% (P = 0.0011) in the absence of insulin. These dynamic changes of adiponectin expression and regulation with adipocyte differentiation are of physiological interest in the light of the paradoxical decrease of adiponectin levels and the continuous recruitment of preadipocytes for differentiation in obesity.  相似文献   

12.
A chronic low-grade inflammation within adipose tissue (AT) seems to be the link between obesity and some of its associated diseases. One hallmark of this AT inflammation is the accumulation of AT macrophages (ATMs) around dead or dying adipocytes, forming so-called crown-like structures (CLS). To investigate the dynamics of CLS and their direct impact on the activation state of ATMs, we established a laser injury model to deplete individual adipocytes in living AT from double reporter mice (GFP-labeled ATMs and tdTomato-labeled adipocytes). Hence, we were able to detect early ATM-adipocyte interactions by live imaging and to determine a precise timeline for CLS formation after adipocyte death. Further, our data indicate metabolic activation and increased lipid metabolism in ATMs upon forming CLS. Most importantly, adipocyte death, even in lean animals under homeostatic conditions, leads to a locally confined inflammation, which is in sharp contrast to other tissues. We identified cell size as cause for the described pro-inflammatory response, as the size of adipocytes is above a critical threshold size for efferocytosis, a process for anti-inflammatory removal of dead cells during tissue homeostasis. Finally, experiments on parabiotic mice verified that adipocyte death leads to a pro-inflammatory response of resident ATMs in vivo, without significant recruitment of blood monocytes. Our data indicate that adipocyte death triggers a unique degradation process and locally induces a metabolically activated ATM phenotype that is globally observed with obesity.Subject terms: Diabetes, Obesity  相似文献   

13.
Objective: Fat cell size is a fundamental parameter in the study of adipose tissue metabolism, because it markedly influences the cellular rates of metabolism. Previous techniques for the sizing of adipocytes are often complicated or time‐consuming. The aim of this study was to develop a new, computerized method for rapid and accurate determination of adipocyte size in a cell suspension obtained by incubating human or rat adipose tissue biopsies with collagenase. Research Methods and Procedures: The cell suspension was placed between a siliconized glass slide and a cover slip. Using the reference method [designated as (R)], the cell diameters were determined manually using a microscope with a calibrated ocular. The new method presented here [designated as (C)] was based on computerized image analysis. Results: After two well‐defined corrective adjustments, measurements with (R) and (C) agreed very well. The small remaining differences seemed, in fact, to depend on inconsistencies in (R). Discussion: We propose that (C) constitutes a valuable tool to study fat cell size, because this method is fast and allows the assessment of a sufficient number of cells to get reliable data on size distribution. Furthermore, images of cell preparations may be stored for future reference.  相似文献   

14.
The intraperitoneal administration of [3H]thymidine to adult rats resulted in the rapid appearance of label in the adipocyte fraction of collagenase digests of adipose tissue. Low-speed centrifugation followed by freezing and slicing showed the label to be uniformly distributed in the adipocyte fraction. The presence of label in DNA was confirmed by hydrolysis with deoxyribonuclease and by inhibition of incorporation with hydroxyurea. Organelle fractionation revealed that the label was predominantly in nuclei, and radioautography showed that only a few adipocyte nuclei were labeled. The label in the adipocyte fraction could not be reduced by increased collagenase digestion or by trypsin treatment. Mixing of labeled adipocytes with unlabeled stroma did not result in decrease of label and addition of labeled stroma to unlabeled adipocytes did not cause significant transfer of radioactivity. Addition of [3H]thymidine to the collagenase digestion medium of unlabeled adipose tissue resulted in more incorporation by adipocytes than by stroma, suggesting the presence of a very rapidly proliferating cell type associated more with adipocytes than with stroma. In vivo turnover studies of labeled DNA indicated that there are two components in both adipocytes and stroma, a rapidly labeled component with a half-life of only several days and another with a half-life of several months. These experiments suggest that there is a rapidly proliferating cell type in adipose tissue, closely associated with mature adipocytes, that may be an adipocyte progenitor or may have some other unknown function.  相似文献   

15.
Expression of apoE in adipocytes has been shown to have an important role in modulating adipocyte triglyceride (TG) metabolism and gene expression that is independent of circulating and extracellular apoE. The impact of adipocyte expression of common human apoE isoforms was evaluated using adipocytes harvested from human apoE2, -3, and -4 knock-in mice. Expression of the apoE2 isoform was associated with an increase in adipocyte apoE gene expression and apoE synthesis. Newly synthesized apoE2 was unstable in adipocytes and demonstrated increased degradation and decreased secretion. ApoE2-expressing mice were hyperlipidemic, and had increased size of gonadal fat pads and of adipocytes, compared with apoE3 mice. In isolated cells, however, expression of the apoE2 isoform produced defective lipogenesis and increased TG hydrolysis. Incubation of adipose tissue with apoE3-containing TG-rich lipoproteins resulted in a significant increase in TG in adipose tissue from apoE3 and -E4 mice, but not apoE2 mice. Reduced capacity to internalize FFA as lipogenic substrate contributed to defective lipogenesis. Newly synthesized apoE2 is unstable in adipocytes and results in decreased adipocyte TG synthesis and defective FA uptake. These changes recapitulate those observed in apoE knockout adipocytes and have implications for understanding metabolic disturbances in humans expressing the E2 isoform.  相似文献   

16.
Obesity in both humans and rodents is characterized by adipocyte hypertrophy and the presence of death adipocytes surrounded by macrophages forming "crown-like structures." However, the biochemical pathways involved in triggering adipocyte death as well as the role of death adipocytes in adipose tissue remodeling and macrophage infiltration remain poorly understood. We now show that induction of adipocyte hypertrophy by incubation of mature adipocytes with saturated fatty acids results in lysosomal destabilization and cathepsin B (ctsb), a key lysosomal cysteine protease, activation and redistribution into the cytosol. ctsb activation was required for the lysosomal permeabilization, and its inhibition protected cells against mitochondrial dysfunction. With the use of a dietary murine model of obesity, ctsb activation was detected in adipose tissue of these mice. This is an early event during weight gain that correlates with the presence of death adipocytes, and precedes macrophage infiltration of adipose tissue. Moreover, ctsb-deficient mice showed decreased lysosomal permeabilization in adipocytes and were protected against adipocyte cell death and macrophage infiltration to adipose tissue independent of body weight. These data strongly suggest that ctsb activation and lysosomal permeabilization in adipocytes are key initial events that contribute to the adipocyte cell death and macrophage infiltration into adipose tissue associated with obesity. Inhibition of ctsb activation may be a new therapeutic strategy for the treatment of obesity-associated metabolic complications.  相似文献   

17.
18.
19.
Phosphodiesterase 3B (PDE3B) gene expression is generally reduced in large adipocytes of obese, insulin-resistant mice. This reduced gene expression is restored by peroxisome proliferator-activated receptor (PPAR) gamma ligands accompanied by a reduced fat cell size. To determine whether PDE3B gene expression is regulated by PPAR gamma itself, we analyzed lean PPAR gamma (+/-) mice with adipocyte size comparable to control PPAR gamma (+/+) mice. In adipocytes of PPAR gamma (+/-) mice, PDE3B mRNA and protein were both reduced to 63% of wild-type levels. Basal PDE activity tended to be decreased to 70% of wild-type levels, and, similarly, insulin-induced PDE activity was significantly decreased to 70%. Thus, PPAR gamma is required for PDE3B gene expression independent of adipocyte size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号